This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonempty class abstraction. See also ab0 . (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) Avoid df-clel , ax-8 . (Revised by GG, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abn0 | ⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 ) | |
| 2 | 1 | notbii | ⊢ ( ¬ { 𝑥 ∣ 𝜑 } = ∅ ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) |
| 3 | df-ne | ⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ¬ { 𝑥 ∣ 𝜑 } = ∅ ) | |
| 4 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 ) |