This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hasheni | ⊢ ( 𝐴 ≈ 𝐵 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ≈ 𝐵 ) | |
| 2 | enfii | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 4 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) | |
| 5 | 3 4 | sylancom | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
| 6 | 1 5 | mpbird | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 7 | relen | ⊢ Rel ≈ | |
| 8 | 7 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 9 | enfi | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) | |
| 10 | 9 | notbid | ⊢ ( 𝐴 ≈ 𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ¬ 𝐴 ∈ Fin ) |
| 12 | hashinf | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 13 | 8 11 12 | syl2an2r | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 14 | 7 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 15 | hashinf | ⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) | |
| 16 | 14 15 | sylan | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 18 | 6 17 | pm2.61dan | ⊢ ( 𝐴 ≈ 𝐵 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |