This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvabv.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | cbvabv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | cbvsbv | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) |
| 3 | df-clab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 4 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑦 ∣ 𝜓 } ) |
| 6 | 5 | eqriv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |