This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval4 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 0 ≤ 𝐾 ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | elfzelz | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 4 | 3 | zred | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℝ ) |
| 5 | lenlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ 𝐾 ↔ ¬ 𝐾 < 0 ) ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 0 ≤ 𝐾 ↔ ¬ 𝐾 < 0 ) ) |
| 7 | 1 6 | mpbid | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ 𝐾 < 0 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ 𝐾 < 0 ) |
| 9 | elfzle2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ≤ 𝑁 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... 𝑁 ) ) → 𝐾 ≤ 𝑁 ) |
| 11 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 12 | lenlt | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾 ) ) | |
| 13 | 4 11 12 | syl2anr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾 ) ) |
| 14 | 10 13 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ 𝑁 < 𝐾 ) |
| 15 | ioran | ⊢ ( ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ↔ ( ¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾 ) ) | |
| 16 | 8 14 15 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) |
| 17 | 16 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 0 ... 𝑁 ) → ¬ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) ) |
| 19 | 18 | con2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) → ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) ) |
| 20 | 19 | 3impia | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) |
| 21 | bcval3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 ) | |
| 22 | 20 21 | syld3an3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ( 𝐾 < 0 ∨ 𝑁 < 𝐾 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |