This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015) (Proof shortened by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfac | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | anidms | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| 3 | enrefg | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≈ 𝐴 ) | |
| 4 | f1finf1o | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑓 : 𝐴 –1-1→ 𝐴 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) | |
| 5 | 3 4 | mpancom | ⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1→ 𝐴 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 6 | 5 | abbidv | ⊢ ( 𝐴 ∈ Fin → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) ) |
| 8 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 9 | bcnn | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) = 1 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) = 1 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · 1 ) ) |
| 12 | 8 | faccld | ⊢ ( 𝐴 ∈ Fin → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℕ ) |
| 13 | 12 | nncnd | ⊢ ( 𝐴 ∈ Fin → ( ! ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 14 | 13 | mulridd | ⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · 1 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( 𝐴 ∈ Fin → ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐴 ) C ( ♯ ‘ 𝐴 ) ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 16 | 2 7 15 | 3eqtr3d | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |