This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabcdv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝑥 ∈ 𝐴 ) ) | |
| Assertion | eqabcdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcdv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) |
| 3 | 2 | eqabdv | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |
| 4 | 3 | eqcomd | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = 𝐴 ) |