This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | ||
| gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | ||
| gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsum2dlem2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 6 | gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 7 | gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | |
| 8 | gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 9 | gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | 9 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 11 | dmfi | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 13 | reseq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ ∅ ) ) | |
| 14 | res0 | ⊢ ( 𝐴 ↾ ∅ ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↾ 𝑥 ) = ∅ ) |
| 16 | 15 | reseq2d | ⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ∅ ) ) |
| 17 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ∅ ) |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ∅ ) ) |
| 20 | mpteq1 | ⊢ ( 𝑥 = ∅ → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) | |
| 21 | mpt0 | ⊢ ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅ | |
| 22 | 20 21 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅ ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ∅ ) ) |
| 24 | 19 23 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) ) ) |
| 26 | reseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ 𝑦 ) ) | |
| 27 | 26 | reseq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) |
| 28 | 27 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ) |
| 29 | mpteq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 33 | reseq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 34 | 33 | reseq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 36 | mpteq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 38 | 35 37 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 40 | reseq2 | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) | |
| 41 | 40 | reseq2d | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) |
| 42 | 41 | oveq2d | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) ) |
| 43 | mpteq1 | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) | |
| 44 | 43 | oveq2d | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 46 | 45 | imbi2d | ⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 47 | eqidd | ⊢ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) | |
| 48 | oveq1 | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) | |
| 49 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 50 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐺 ∈ CMnd ) |
| 51 | 4 | resexd | ⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V ) |
| 53 | resss | ⊢ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴 | |
| 54 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) | |
| 55 | 8 53 54 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) |
| 57 | 8 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 58 | 57 | funresd | ⊢ ( 𝜑 → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 60 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 61 | 8 4 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 62 | 2 | fvexi | ⊢ 0 ∈ V |
| 63 | ressuppss | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 64 | 61 62 63 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 66 | 60 65 | ssfid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) |
| 67 | 61 | resexd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V ) |
| 68 | isfsupp | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) | |
| 69 | 67 62 68 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 71 | 59 66 70 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ) |
| 72 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 73 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 74 | 72 73 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 75 | 74 | reseq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( 𝐴 ↾ ∅ ) ) |
| 76 | resindi | ⊢ ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) ) | |
| 77 | 75 76 14 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ↾ 𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) ) = ∅ ) |
| 78 | resundi | ⊢ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) ) | |
| 79 | 78 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 80 | 1 2 49 50 52 56 71 77 79 | gsumsplit | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 81 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 82 | ssres2 | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ 𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 83 | resabs1 | ⊢ ( ( 𝐴 ↾ 𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) | |
| 84 | 81 82 83 | mp2b | ⊢ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) |
| 85 | 84 | oveq2i | ⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) |
| 86 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 87 | ssres2 | ⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 88 | resabs1 | ⊢ ( ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) | |
| 89 | 86 87 88 | mp2b | ⊢ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) |
| 90 | 89 | oveq2i | ⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 91 | 85 90 | oveq12i | ⊢ ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 92 | 80 91 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 93 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) | |
| 94 | 1 2 3 4 5 6 7 8 9 | gsum2dlem1 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 95 | 94 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 96 | vex | ⊢ 𝑧 ∈ V | |
| 97 | 96 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ V ) |
| 98 | sneq | ⊢ ( 𝑗 = 𝑧 → { 𝑗 } = { 𝑧 } ) | |
| 99 | 98 | imaeq2d | ⊢ ( 𝑗 = 𝑧 → ( 𝐴 “ { 𝑗 } ) = ( 𝐴 “ { 𝑧 } ) ) |
| 100 | oveq1 | ⊢ ( 𝑗 = 𝑧 → ( 𝑗 𝐹 𝑘 ) = ( 𝑧 𝐹 𝑘 ) ) | |
| 101 | 99 100 | mpteq12dv | ⊢ ( 𝑗 = 𝑧 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) |
| 102 | 101 | oveq2d | ⊢ ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) |
| 103 | 102 | eleq1d | ⊢ ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ) |
| 104 | 103 | imbi2d | ⊢ ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ) ) |
| 105 | 104 94 | chvarvv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 107 | 1 49 50 93 95 97 72 106 102 | gsumunsn | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) ) |
| 108 | 98 | reseq2d | ⊢ ( 𝑗 = 𝑧 → ( 𝐴 ↾ { 𝑗 } ) = ( 𝐴 ↾ { 𝑧 } ) ) |
| 109 | 108 | reseq2d | ⊢ ( 𝑗 = 𝑧 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 110 | 109 | oveq2d | ⊢ ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 111 | 102 110 | eqeq12d | ⊢ ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 112 | 111 | imbi2d | ⊢ ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) ) |
| 113 | imaexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) | |
| 114 | 4 113 | syl | ⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 115 | vex | ⊢ 𝑗 ∈ V | |
| 116 | vex | ⊢ 𝑘 ∈ V | |
| 117 | 115 116 | elimasn | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 118 | df-ov | ⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 119 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) ∈ 𝐵 ) |
| 120 | 118 119 | eqeltrid | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 121 | 117 120 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 122 | 121 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 ) |
| 123 | funmpt | ⊢ Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) | |
| 124 | 123 | a1i | ⊢ ( 𝜑 → Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 125 | rnfi | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin ) | |
| 126 | 10 125 | syl | ⊢ ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin ) |
| 127 | 117 | biimpi | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 128 | 115 116 | opelrn | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) ) |
| 129 | 128 | con3i | ⊢ ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 130 | 127 129 | anim12i | ⊢ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
| 131 | eldif | ⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) ) | |
| 132 | eldif | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) | |
| 133 | 130 131 132 | 3imtr4i | ⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
| 134 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 135 | 62 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 136 | 8 134 4 135 | suppssr | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 137 | 118 136 | eqtrid | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 138 | 133 137 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 139 | 138 114 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) ) |
| 140 | 126 139 | ssfid | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) |
| 141 | 114 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V ) |
| 142 | isfsupp | ⊢ ( ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) ) | |
| 143 | 141 62 142 | sylancl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) ) |
| 144 | 124 140 143 | mpbir2and | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ) |
| 145 | 2ndconst | ⊢ ( 𝑗 ∈ V → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) ) | |
| 146 | 115 145 | mp1i | ⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) ) |
| 147 | 1 2 3 114 122 144 146 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) ) |
| 148 | 1st2nd2 | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 149 | xp1st | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st ‘ 𝑥 ) ∈ { 𝑗 } ) | |
| 150 | elsni | ⊢ ( ( 1st ‘ 𝑥 ) ∈ { 𝑗 } → ( 1st ‘ 𝑥 ) = 𝑗 ) | |
| 151 | 149 150 | syl | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st ‘ 𝑥 ) = 𝑗 ) |
| 152 | 151 | opeq1d | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) |
| 153 | 148 152 | eqtrd | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) |
| 154 | 153 | fveq2d | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) ) |
| 155 | df-ov | ⊢ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 156 | 154 155 | eqtr4di | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) |
| 157 | 156 | mpteq2ia | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) |
| 158 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 159 | 158 | reseq1d | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) |
| 160 | resss | ⊢ ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴 | |
| 161 | resmpt | ⊢ ( ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 162 | 160 161 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 163 | ressn | ⊢ ( 𝐴 ↾ { 𝑗 } ) = ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) | |
| 164 | 163 | mpteq1i | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 165 | 162 164 | eqtri | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 166 | 159 165 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 167 | xp2nd | ⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) ) | |
| 168 | 167 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) ) |
| 169 | fo2nd | ⊢ 2nd : V –onto→ V | |
| 170 | fof | ⊢ ( 2nd : V –onto→ V → 2nd : V ⟶ V ) | |
| 171 | 169 170 | mp1i | ⊢ ( 𝜑 → 2nd : V ⟶ V ) |
| 172 | 171 | feqmptd | ⊢ ( 𝜑 → 2nd = ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 173 | 172 | reseq1d | ⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) |
| 174 | ssv | ⊢ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V | |
| 175 | resmpt | ⊢ ( ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V → ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) ) | |
| 176 | 174 175 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) |
| 177 | 173 176 | eqtrdi | ⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 178 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) | |
| 179 | oveq2 | ⊢ ( 𝑘 = ( 2nd ‘ 𝑥 ) → ( 𝑗 𝐹 𝑘 ) = ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) | |
| 180 | 168 177 178 179 | fmptco | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) ) |
| 181 | 157 166 180 | 3eqtr4a | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) |
| 182 | 181 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) ) |
| 183 | 147 182 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ) |
| 184 | 112 183 | chvarvv | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 185 | 184 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 186 | 185 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 187 | 107 186 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 188 | 92 187 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) ) |
| 189 | 48 188 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 190 | 189 | expcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 191 | 190 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 192 | 25 32 39 46 47 191 | findcard2s | ⊢ ( dom ( 𝐹 supp 0 ) ∈ Fin → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 193 | 12 192 | mpcom | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |