This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | |- B = ( Base ` G ) |
|
| gsum2d.z | |- .0. = ( 0g ` G ) |
||
| gsum2d.g | |- ( ph -> G e. CMnd ) |
||
| gsum2d.a | |- ( ph -> A e. V ) |
||
| gsum2d.r | |- ( ph -> Rel A ) |
||
| gsum2d.d | |- ( ph -> D e. W ) |
||
| gsum2d.s | |- ( ph -> dom A C_ D ) |
||
| gsum2d.f | |- ( ph -> F : A --> B ) |
||
| gsum2d.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsum2dlem2 | |- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | |- B = ( Base ` G ) |
|
| 2 | gsum2d.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsum2d.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsum2d.a | |- ( ph -> A e. V ) |
|
| 5 | gsum2d.r | |- ( ph -> Rel A ) |
|
| 6 | gsum2d.d | |- ( ph -> D e. W ) |
|
| 7 | gsum2d.s | |- ( ph -> dom A C_ D ) |
|
| 8 | gsum2d.f | |- ( ph -> F : A --> B ) |
|
| 9 | gsum2d.w | |- ( ph -> F finSupp .0. ) |
|
| 10 | 9 | fsuppimpd | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 11 | dmfi | |- ( ( F supp .0. ) e. Fin -> dom ( F supp .0. ) e. Fin ) |
|
| 12 | 10 11 | syl | |- ( ph -> dom ( F supp .0. ) e. Fin ) |
| 13 | reseq2 | |- ( x = (/) -> ( A |` x ) = ( A |` (/) ) ) |
|
| 14 | res0 | |- ( A |` (/) ) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( x = (/) -> ( A |` x ) = (/) ) |
| 16 | 15 | reseq2d | |- ( x = (/) -> ( F |` ( A |` x ) ) = ( F |` (/) ) ) |
| 17 | res0 | |- ( F |` (/) ) = (/) |
|
| 18 | 16 17 | eqtrdi | |- ( x = (/) -> ( F |` ( A |` x ) ) = (/) ) |
| 19 | 18 | oveq2d | |- ( x = (/) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum (/) ) ) |
| 20 | mpteq1 | |- ( x = (/) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. (/) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
|
| 21 | mpt0 | |- ( j e. (/) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = (/) |
|
| 22 | 20 21 | eqtrdi | |- ( x = (/) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = (/) ) |
| 23 | 22 | oveq2d | |- ( x = (/) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum (/) ) ) |
| 24 | 19 23 | eqeq12d | |- ( x = (/) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum (/) ) = ( G gsum (/) ) ) ) |
| 25 | 24 | imbi2d | |- ( x = (/) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum (/) ) = ( G gsum (/) ) ) ) ) |
| 26 | reseq2 | |- ( x = y -> ( A |` x ) = ( A |` y ) ) |
|
| 27 | 26 | reseq2d | |- ( x = y -> ( F |` ( A |` x ) ) = ( F |` ( A |` y ) ) ) |
| 28 | 27 | oveq2d | |- ( x = y -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` y ) ) ) ) |
| 29 | mpteq1 | |- ( x = y -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
|
| 30 | 29 | oveq2d | |- ( x = y -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 31 | 28 30 | eqeq12d | |- ( x = y -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = y -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 33 | reseq2 | |- ( x = ( y u. { z } ) -> ( A |` x ) = ( A |` ( y u. { z } ) ) ) |
|
| 34 | 33 | reseq2d | |- ( x = ( y u. { z } ) -> ( F |` ( A |` x ) ) = ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 35 | 34 | oveq2d | |- ( x = ( y u. { z } ) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) ) |
| 36 | mpteq1 | |- ( x = ( y u. { z } ) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
|
| 37 | 36 | oveq2d | |- ( x = ( y u. { z } ) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 38 | 35 37 | eqeq12d | |- ( x = ( y u. { z } ) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 39 | 38 | imbi2d | |- ( x = ( y u. { z } ) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 40 | reseq2 | |- ( x = dom ( F supp .0. ) -> ( A |` x ) = ( A |` dom ( F supp .0. ) ) ) |
|
| 41 | 40 | reseq2d | |- ( x = dom ( F supp .0. ) -> ( F |` ( A |` x ) ) = ( F |` ( A |` dom ( F supp .0. ) ) ) ) |
| 42 | 41 | oveq2d | |- ( x = dom ( F supp .0. ) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) ) |
| 43 | mpteq1 | |- ( x = dom ( F supp .0. ) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
|
| 44 | 43 | oveq2d | |- ( x = dom ( F supp .0. ) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 45 | 42 44 | eqeq12d | |- ( x = dom ( F supp .0. ) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 46 | 45 | imbi2d | |- ( x = dom ( F supp .0. ) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 47 | eqidd | |- ( ph -> ( G gsum (/) ) = ( G gsum (/) ) ) |
|
| 48 | oveq1 | |- ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
|
| 49 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 50 | 3 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> G e. CMnd ) |
| 51 | 4 | resexd | |- ( ph -> ( A |` ( y u. { z } ) ) e. _V ) |
| 52 | 51 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y u. { z } ) ) e. _V ) |
| 53 | resss | |- ( A |` ( y u. { z } ) ) C_ A |
|
| 54 | fssres | |- ( ( F : A --> B /\ ( A |` ( y u. { z } ) ) C_ A ) -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
|
| 55 | 8 53 54 | sylancl | |- ( ph -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
| 57 | 8 | ffund | |- ( ph -> Fun F ) |
| 58 | 57 | funresd | |- ( ph -> Fun ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> Fun ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 60 | 10 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F supp .0. ) e. Fin ) |
| 61 | 8 4 | fexd | |- ( ph -> F e. _V ) |
| 62 | 2 | fvexi | |- .0. e. _V |
| 63 | ressuppss | |- ( ( F e. _V /\ .0. e. _V ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
|
| 64 | 61 62 63 | sylancl | |- ( ph -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 65 | 64 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 66 | 60 65 | ssfid | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) |
| 67 | 61 | resexd | |- ( ph -> ( F |` ( A |` ( y u. { z } ) ) ) e. _V ) |
| 68 | isfsupp | |- ( ( ( F |` ( A |` ( y u. { z } ) ) ) e. _V /\ .0. e. _V ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
|
| 69 | 67 62 68 | sylancl | |- ( ph -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
| 70 | 69 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
| 71 | 59 66 70 | mpbir2and | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. ) |
| 72 | simprr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> -. z e. y ) |
|
| 73 | disjsn | |- ( ( y i^i { z } ) = (/) <-> -. z e. y ) |
|
| 74 | 72 73 | sylibr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( y i^i { z } ) = (/) ) |
| 75 | 74 | reseq2d | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y i^i { z } ) ) = ( A |` (/) ) ) |
| 76 | resindi | |- ( A |` ( y i^i { z } ) ) = ( ( A |` y ) i^i ( A |` { z } ) ) |
|
| 77 | 75 76 14 | 3eqtr3g | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( A |` y ) i^i ( A |` { z } ) ) = (/) ) |
| 78 | resundi | |- ( A |` ( y u. { z } ) ) = ( ( A |` y ) u. ( A |` { z } ) ) |
|
| 79 | 78 | a1i | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y u. { z } ) ) = ( ( A |` y ) u. ( A |` { z } ) ) ) |
| 80 | 1 2 49 50 52 56 71 77 79 | gsumsplit | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) ) ) |
| 81 | ssun1 | |- y C_ ( y u. { z } ) |
|
| 82 | ssres2 | |- ( y C_ ( y u. { z } ) -> ( A |` y ) C_ ( A |` ( y u. { z } ) ) ) |
|
| 83 | resabs1 | |- ( ( A |` y ) C_ ( A |` ( y u. { z } ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) = ( F |` ( A |` y ) ) ) |
|
| 84 | 81 82 83 | mp2b | |- ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) = ( F |` ( A |` y ) ) |
| 85 | 84 | oveq2i | |- ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) = ( G gsum ( F |` ( A |` y ) ) ) |
| 86 | ssun2 | |- { z } C_ ( y u. { z } ) |
|
| 87 | ssres2 | |- ( { z } C_ ( y u. { z } ) -> ( A |` { z } ) C_ ( A |` ( y u. { z } ) ) ) |
|
| 88 | resabs1 | |- ( ( A |` { z } ) C_ ( A |` ( y u. { z } ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) = ( F |` ( A |` { z } ) ) ) |
|
| 89 | 86 87 88 | mp2b | |- ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) = ( F |` ( A |` { z } ) ) |
| 90 | 89 | oveq2i | |- ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) |
| 91 | 85 90 | oveq12i | |- ( ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) ) = ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 92 | 80 91 | eqtrdi | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 93 | simprl | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> y e. Fin ) |
|
| 94 | 1 2 3 4 5 6 7 8 9 | gsum2dlem1 | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 95 | 94 | ad2antrr | |- ( ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) /\ j e. y ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 96 | vex | |- z e. _V |
|
| 97 | 96 | a1i | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> z e. _V ) |
| 98 | sneq | |- ( j = z -> { j } = { z } ) |
|
| 99 | 98 | imaeq2d | |- ( j = z -> ( A " { j } ) = ( A " { z } ) ) |
| 100 | oveq1 | |- ( j = z -> ( j F k ) = ( z F k ) ) |
|
| 101 | 99 100 | mpteq12dv | |- ( j = z -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { z } ) |-> ( z F k ) ) ) |
| 102 | 101 | oveq2d | |- ( j = z -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) |
| 103 | 102 | eleq1d | |- ( j = z -> ( ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B <-> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) ) |
| 104 | 103 | imbi2d | |- ( j = z -> ( ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) <-> ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) ) ) |
| 105 | 104 94 | chvarvv | |- ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) |
| 106 | 105 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) |
| 107 | 1 49 50 93 95 97 72 106 102 | gsumunsn | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) ) |
| 108 | 98 | reseq2d | |- ( j = z -> ( A |` { j } ) = ( A |` { z } ) ) |
| 109 | 108 | reseq2d | |- ( j = z -> ( F |` ( A |` { j } ) ) = ( F |` ( A |` { z } ) ) ) |
| 110 | 109 | oveq2d | |- ( j = z -> ( G gsum ( F |` ( A |` { j } ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 111 | 102 110 | eqeq12d | |- ( j = z -> ( ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) <-> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 112 | 111 | imbi2d | |- ( j = z -> ( ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) ) <-> ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) ) ) |
| 113 | imaexg | |- ( A e. V -> ( A " { j } ) e. _V ) |
|
| 114 | 4 113 | syl | |- ( ph -> ( A " { j } ) e. _V ) |
| 115 | vex | |- j e. _V |
|
| 116 | vex | |- k e. _V |
|
| 117 | 115 116 | elimasn | |- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
| 118 | df-ov | |- ( j F k ) = ( F ` <. j , k >. ) |
|
| 119 | 8 | ffvelcdmda | |- ( ( ph /\ <. j , k >. e. A ) -> ( F ` <. j , k >. ) e. B ) |
| 120 | 118 119 | eqeltrid | |- ( ( ph /\ <. j , k >. e. A ) -> ( j F k ) e. B ) |
| 121 | 117 120 | sylan2b | |- ( ( ph /\ k e. ( A " { j } ) ) -> ( j F k ) e. B ) |
| 122 | 121 | fmpttd | |- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) : ( A " { j } ) --> B ) |
| 123 | funmpt | |- Fun ( k e. ( A " { j } ) |-> ( j F k ) ) |
|
| 124 | 123 | a1i | |- ( ph -> Fun ( k e. ( A " { j } ) |-> ( j F k ) ) ) |
| 125 | rnfi | |- ( ( F supp .0. ) e. Fin -> ran ( F supp .0. ) e. Fin ) |
|
| 126 | 10 125 | syl | |- ( ph -> ran ( F supp .0. ) e. Fin ) |
| 127 | 117 | biimpi | |- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
| 128 | 115 116 | opelrn | |- ( <. j , k >. e. ( F supp .0. ) -> k e. ran ( F supp .0. ) ) |
| 129 | 128 | con3i | |- ( -. k e. ran ( F supp .0. ) -> -. <. j , k >. e. ( F supp .0. ) ) |
| 130 | 127 129 | anim12i | |- ( ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) -> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
| 131 | eldif | |- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) <-> ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) ) |
|
| 132 | eldif | |- ( <. j , k >. e. ( A \ ( F supp .0. ) ) <-> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
|
| 133 | 130 131 132 | 3imtr4i | |- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
| 134 | ssidd | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
|
| 135 | 62 | a1i | |- ( ph -> .0. e. _V ) |
| 136 | 8 134 4 135 | suppssr | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 137 | 118 136 | eqtrid | |- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 138 | 133 137 | sylan2 | |- ( ( ph /\ k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 139 | 138 114 | suppss2 | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) C_ ran ( F supp .0. ) ) |
| 140 | 126 139 | ssfid | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) |
| 141 | 114 | mptexd | |- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) e. _V ) |
| 142 | isfsupp | |- ( ( ( k e. ( A " { j } ) |-> ( j F k ) ) e. _V /\ .0. e. _V ) -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. <-> ( Fun ( k e. ( A " { j } ) |-> ( j F k ) ) /\ ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) ) ) |
|
| 143 | 141 62 142 | sylancl | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. <-> ( Fun ( k e. ( A " { j } ) |-> ( j F k ) ) /\ ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) ) ) |
| 144 | 124 140 143 | mpbir2and | |- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. ) |
| 145 | 2ndconst | |- ( j e. _V -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) : ( { j } X. ( A " { j } ) ) -1-1-onto-> ( A " { j } ) ) |
|
| 146 | 115 145 | mp1i | |- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) : ( { j } X. ( A " { j } ) ) -1-1-onto-> ( A " { j } ) ) |
| 147 | 1 2 3 114 122 144 146 | gsumf1o | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) ) |
| 148 | 1st2nd2 | |- ( x e. ( { j } X. ( A " { j } ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 149 | xp1st | |- ( x e. ( { j } X. ( A " { j } ) ) -> ( 1st ` x ) e. { j } ) |
|
| 150 | elsni | |- ( ( 1st ` x ) e. { j } -> ( 1st ` x ) = j ) |
|
| 151 | 149 150 | syl | |- ( x e. ( { j } X. ( A " { j } ) ) -> ( 1st ` x ) = j ) |
| 152 | 151 | opeq1d | |- ( x e. ( { j } X. ( A " { j } ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. = <. j , ( 2nd ` x ) >. ) |
| 153 | 148 152 | eqtrd | |- ( x e. ( { j } X. ( A " { j } ) ) -> x = <. j , ( 2nd ` x ) >. ) |
| 154 | 153 | fveq2d | |- ( x e. ( { j } X. ( A " { j } ) ) -> ( F ` x ) = ( F ` <. j , ( 2nd ` x ) >. ) ) |
| 155 | df-ov | |- ( j F ( 2nd ` x ) ) = ( F ` <. j , ( 2nd ` x ) >. ) |
|
| 156 | 154 155 | eqtr4di | |- ( x e. ( { j } X. ( A " { j } ) ) -> ( F ` x ) = ( j F ( 2nd ` x ) ) ) |
| 157 | 156 | mpteq2ia | |- ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( j F ( 2nd ` x ) ) ) |
| 158 | 8 | feqmptd | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 159 | 158 | reseq1d | |- ( ph -> ( F |` ( A |` { j } ) ) = ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) ) |
| 160 | resss | |- ( A |` { j } ) C_ A |
|
| 161 | resmpt | |- ( ( A |` { j } ) C_ A -> ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( A |` { j } ) |-> ( F ` x ) ) ) |
|
| 162 | 160 161 | ax-mp | |- ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( A |` { j } ) |-> ( F ` x ) ) |
| 163 | ressn | |- ( A |` { j } ) = ( { j } X. ( A " { j } ) ) |
|
| 164 | 163 | mpteq1i | |- ( x e. ( A |` { j } ) |-> ( F ` x ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) |
| 165 | 162 164 | eqtri | |- ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) |
| 166 | 159 165 | eqtrdi | |- ( ph -> ( F |` ( A |` { j } ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) ) |
| 167 | xp2nd | |- ( x e. ( { j } X. ( A " { j } ) ) -> ( 2nd ` x ) e. ( A " { j } ) ) |
|
| 168 | 167 | adantl | |- ( ( ph /\ x e. ( { j } X. ( A " { j } ) ) ) -> ( 2nd ` x ) e. ( A " { j } ) ) |
| 169 | fo2nd | |- 2nd : _V -onto-> _V |
|
| 170 | fof | |- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
|
| 171 | 169 170 | mp1i | |- ( ph -> 2nd : _V --> _V ) |
| 172 | 171 | feqmptd | |- ( ph -> 2nd = ( x e. _V |-> ( 2nd ` x ) ) ) |
| 173 | 172 | reseq1d | |- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) = ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) ) |
| 174 | ssv | |- ( { j } X. ( A " { j } ) ) C_ _V |
|
| 175 | resmpt | |- ( ( { j } X. ( A " { j } ) ) C_ _V -> ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) ) |
|
| 176 | 174 175 | ax-mp | |- ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) |
| 177 | 173 176 | eqtrdi | |- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) ) |
| 178 | eqidd | |- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { j } ) |-> ( j F k ) ) ) |
|
| 179 | oveq2 | |- ( k = ( 2nd ` x ) -> ( j F k ) = ( j F ( 2nd ` x ) ) ) |
|
| 180 | 168 177 178 179 | fmptco | |- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( j F ( 2nd ` x ) ) ) ) |
| 181 | 157 166 180 | 3eqtr4a | |- ( ph -> ( F |` ( A |` { j } ) ) = ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) |
| 182 | 181 | oveq2d | |- ( ph -> ( G gsum ( F |` ( A |` { j } ) ) ) = ( G gsum ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) ) |
| 183 | 147 182 | eqtr4d | |- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) ) |
| 184 | 112 183 | chvarvv | |- ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 185 | 184 | adantr | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 186 | 185 | oveq2d | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 187 | 107 186 | eqtrd | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 188 | 92 187 | eqeq12d | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) ) |
| 189 | 48 188 | imbitrrid | |- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 190 | 189 | expcom | |- ( ( y e. Fin /\ -. z e. y ) -> ( ph -> ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 191 | 190 | a2d | |- ( ( y e. Fin /\ -. z e. y ) -> ( ( ph -> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) -> ( ph -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 192 | 25 32 39 46 47 191 | findcard2s | |- ( dom ( F supp .0. ) e. Fin -> ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 193 | 12 192 | mpcom | |- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |