This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | ||
| gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | ||
| gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsum2dlem1 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 6 | gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 7 | gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | |
| 8 | gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 9 | gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | imaexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 12 | vex | ⊢ 𝑗 ∈ V | |
| 13 | vex | ⊢ 𝑘 ∈ V | |
| 14 | 12 13 | elimasn | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 15 | df-ov | ⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 16 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) ∈ 𝐵 ) |
| 17 | 15 16 | eqeltrid | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 18 | 14 17 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 19 | 18 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 ) |
| 20 | 9 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 21 | rnfi | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin ) |
| 23 | 14 | biimpi | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 24 | 12 13 | opelrn | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) ) |
| 25 | 24 | con3i | ⊢ ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 26 | 23 25 | anim12i | ⊢ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
| 27 | eldif | ⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) ) | |
| 28 | eldif | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) | |
| 29 | 26 27 28 | 3imtr4i | ⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
| 30 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 31 | 2 | fvexi | ⊢ 0 ∈ V |
| 32 | 31 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 33 | 8 30 4 32 | suppssr | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 34 | 15 33 | eqtrid | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 35 | 29 34 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 36 | 35 11 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) ) |
| 37 | 22 36 | ssfid | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) |
| 38 | 1 2 3 11 19 37 | gsumcl2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |