This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resindi | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐴 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpindir | ⊢ ( ( 𝐵 ∩ 𝐶 ) × V ) = ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) | |
| 2 | 1 | ineq2i | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∩ 𝐶 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) ) |
| 3 | inindi | ⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) ) | |
| 4 | 2 3 | eqtri | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∩ 𝐶 ) × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) ) |
| 5 | df-res | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ∩ ( ( 𝐵 ∩ 𝐶 ) × V ) ) | |
| 6 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 7 | df-res | ⊢ ( 𝐴 ↾ 𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) ) | |
| 8 | 6 7 | ineq12i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐴 ↾ 𝐶 ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐴 ∩ ( 𝐶 × V ) ) ) |
| 9 | 4 5 8 | 3eqtr4i | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐴 ↾ 𝐶 ) ) |