This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfsupp | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq | ⊢ ( 𝑟 = 𝑅 → ( Fun 𝑟 ↔ Fun 𝑅 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = 𝑍 ) → ( Fun 𝑟 ↔ Fun 𝑅 ) ) |
| 3 | oveq12 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = 𝑍 ) → ( 𝑟 supp 𝑧 ) = ( 𝑅 supp 𝑍 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = 𝑍 ) → ( ( 𝑟 supp 𝑧 ) ∈ Fin ↔ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = 𝑍 ) → ( ( Fun 𝑟 ∧ ( 𝑟 supp 𝑧 ) ∈ Fin ) ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
| 6 | df-fsupp | ⊢ finSupp = { 〈 𝑟 , 𝑧 〉 ∣ ( Fun 𝑟 ∧ ( 𝑟 supp 𝑧 ) ∈ Fin ) } | |
| 7 | 5 6 | brabga | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |