This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressuppss | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑏 ∈ dom 𝐹 ) | |
| 2 | dmres | ⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) | |
| 3 | 1 2 | eleq2s | ⊢ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) → 𝑏 ∈ dom 𝐹 ) |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → 𝑏 ∈ dom 𝐹 ) |
| 5 | snssi | ⊢ ( 𝑏 ∈ 𝐵 → { 𝑏 } ⊆ 𝐵 ) | |
| 6 | resima2 | ⊢ ( { 𝑏 } ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) = ( 𝐹 “ { 𝑏 } ) ) |
| 8 | 7 | neeq1d | ⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 9 | 8 | biimpd | ⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 10 | 9 | adantld | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 11 | 10 | adantld | ⊢ ( 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 12 | elin | ⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹 ) ) | |
| 13 | pm2.24 | ⊢ ( 𝑏 ∈ 𝐵 → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ dom 𝐹 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 15 | 12 14 | sylbi | ⊢ ( 𝑏 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 16 | 15 2 | eleq2s | ⊢ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( ¬ 𝑏 ∈ 𝐵 → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 18 | 17 | com12 | ⊢ ( ¬ 𝑏 ∈ 𝐵 → ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 19 | 11 18 | pm2.61i | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) |
| 20 | 4 19 | jca | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) |
| 21 | 20 | ex | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) → ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) ) ) |
| 22 | 21 | ss2abdv | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) } ⊆ { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) } ) |
| 23 | df-rab | ⊢ { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } ) } | |
| 24 | df-rab | ⊢ { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } = { 𝑏 ∣ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } ) } | |
| 25 | 22 23 24 | 3sstr4g | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ⊆ { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } ) |
| 26 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐵 ) ∈ V ) | |
| 27 | suppval | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ) | |
| 28 | 26 27 | sylan | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑏 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑏 } ) ≠ { 𝑍 } } ) |
| 29 | suppval | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑏 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑏 } ) ≠ { 𝑍 } } ) | |
| 30 | 25 28 29 | 3sstr4d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |