This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsplit.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumsplit.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumsplit.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| gsumsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | ||
| Assertion | gsumsplit | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsplit.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | gsumsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumsplit.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumsplit.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | gsumsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 9 | gsumsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | |
| 10 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 11 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 13 | 1 10 4 6 | cntzcmnf | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 14 | 1 2 3 10 12 5 6 13 7 8 9 | gsumzsplit | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |