This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | ||
| gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | ||
| gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsum2d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsum2d.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsum2d.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsum2d.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsum2d.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsum2d.r | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 6 | gsum2d.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 7 | gsum2d.s | ⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) | |
| 8 | gsum2d.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 9 | gsum2d.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | gsum2dlem2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 11 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 12 | 11 8 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 13 | relss | ⊢ ( ( 𝐹 supp 0 ) ⊆ 𝐴 → ( Rel 𝐴 → Rel ( 𝐹 supp 0 ) ) ) | |
| 14 | 12 5 13 | sylc | ⊢ ( 𝜑 → Rel ( 𝐹 supp 0 ) ) |
| 15 | relssdmrn | ⊢ ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ) | |
| 16 | ssv | ⊢ ran ( 𝐹 supp 0 ) ⊆ V | |
| 17 | xpss2 | ⊢ ( ran ( 𝐹 supp 0 ) ⊆ V → ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) |
| 19 | 15 18 | sstrdi | ⊢ ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 20 | 14 19 | syl | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 21 | 12 20 | ssind | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) ) ) |
| 22 | df-res | ⊢ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) = ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) ) | |
| 23 | 21 22 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) |
| 24 | 1 2 3 4 8 23 9 | gsumres | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 25 | dmss | ⊢ ( ( 𝐹 supp 0 ) ⊆ 𝐴 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 ) | |
| 26 | 12 25 | syl | ⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 ) |
| 27 | 26 7 | sstrd | ⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ 𝐷 ) |
| 28 | 27 | resmptd | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 9 | gsum2dlem1 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 32 | 31 | fmpttd | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 33 | vex | ⊢ 𝑗 ∈ V | |
| 34 | vex | ⊢ 𝑘 ∈ V | |
| 35 | 33 34 | elimasn | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 36 | 35 | biimpi | ⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 37 | 36 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 38 | eldifn | ⊢ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) ) |
| 40 | 33 34 | opeldm | ⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑗 ∈ dom ( 𝐹 supp 0 ) ) |
| 41 | 39 40 | nsyl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 42 | 37 41 | eldifd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
| 43 | df-ov | ⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 44 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 45 | 2 | fvexi | ⊢ 0 ∈ V |
| 46 | 45 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 47 | 8 44 4 46 | suppssr | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 48 | 43 47 | eqtrid | ⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 49 | 42 48 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 50 | 49 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 51 | 50 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) ) |
| 53 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 54 | 3 53 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 55 | imaexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) | |
| 56 | 4 55 | syl | ⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 57 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 “ { 𝑗 } ) ∈ V ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 58 | 54 56 57 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 60 | 52 59 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = 0 ) |
| 61 | 60 6 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ⊆ dom ( 𝐹 supp 0 ) ) |
| 62 | funmpt | ⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) | |
| 63 | 62 | a1i | ⊢ ( 𝜑 → Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 64 | 9 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 65 | dmfi | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin ) | |
| 66 | 64 65 | syl | ⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 67 | 66 61 | ssfid | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) |
| 68 | 6 | mptexd | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V ) |
| 69 | isfsupp | ⊢ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) ) | |
| 70 | 68 46 69 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 71 | 63 67 70 | mpbir2and | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ) |
| 72 | 1 2 3 6 32 61 71 | gsumres | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 73 | 29 72 | eqtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 74 | 10 24 73 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |