This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressn | ⊢ ( 𝐴 ↾ { 𝐵 } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝐴 ↾ { 𝐵 } ) | |
| 2 | relxp | ⊢ Rel ( { 𝐵 } × ( 𝐴 “ { 𝐵 } ) ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | elimasn | ⊢ ( 𝑦 ∈ ( 𝐴 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 6 | elsni | ⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) | |
| 7 | 6 | sneqd | ⊢ ( 𝑥 ∈ { 𝐵 } → { 𝑥 } = { 𝐵 } ) |
| 8 | 7 | imaeq2d | ⊢ ( 𝑥 ∈ { 𝐵 } → ( 𝐴 “ { 𝑥 } ) = ( 𝐴 “ { 𝐵 } ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑥 ∈ { 𝐵 } → ( 𝑦 ∈ ( 𝐴 “ { 𝑥 } ) ↔ 𝑦 ∈ ( 𝐴 “ { 𝐵 } ) ) ) |
| 10 | 5 9 | bitr3id | ⊢ ( 𝑥 ∈ { 𝐵 } → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 𝑦 ∈ ( 𝐴 “ { 𝐵 } ) ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝑥 ∈ { 𝐵 } ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ↔ ( 𝑥 ∈ { 𝐵 } ∧ 𝑦 ∈ ( 𝐴 “ { 𝐵 } ) ) ) |
| 12 | 4 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ { 𝐵 } ) ↔ ( 𝑥 ∈ { 𝐵 } ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 13 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝐵 } × ( 𝐴 “ { 𝐵 } ) ) ↔ ( 𝑥 ∈ { 𝐵 } ∧ 𝑦 ∈ ( 𝐴 “ { 𝐵 } ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ { 𝐵 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝐵 } × ( 𝐴 “ { 𝐵 } ) ) ) |
| 15 | 1 2 14 | eqrelriiv | ⊢ ( 𝐴 ↾ { 𝐵 } ) = ( { 𝐵 } × ( 𝐴 “ { 𝐵 } ) ) |