This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | gexdvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | 1 2 3 4 | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( 𝑁 · 𝑥 ) = 0 ) |
| 6 | 5 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ∥ 𝑁 → ( 𝑁 · 𝑥 ) = 0 ) ) |
| 7 | 6 | ralrimdva | ⊢ ( 𝐺 ∈ Grp → ( 𝐸 ∥ 𝑁 → ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 → ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 9 | noel | ⊢ ¬ ( abs ‘ 𝑁 ) ∈ ∅ | |
| 10 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) | |
| 11 | 10 | eleq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( abs ‘ 𝑁 ) ∈ ∅ ) ) |
| 12 | oveq1 | ⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( 𝑦 · 𝑥 ) = ( ( abs ‘ 𝑁 ) · 𝑥 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑦 = ( abs ‘ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
| 15 | 14 | elrab | ⊢ ( ( abs ‘ 𝑁 ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) |
| 16 | 11 15 | bitr3di | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ ∅ ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) ) ) |
| 17 | 16 | rbaibd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) → ( ( abs ‘ 𝑁 ) ∈ ∅ ↔ ( abs ‘ 𝑁 ) ∈ ℕ ) ) |
| 18 | 9 17 | mtbii | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ) → ¬ ( abs ‘ 𝑁 ) ∈ ℕ ) |
| 19 | 18 | ex | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 → ¬ ( abs ‘ 𝑁 ) ∈ ℕ ) ) |
| 20 | nn0abscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( abs ‘ 𝑁 ) ∈ ℕ0 ) |
| 22 | elnn0 | ⊢ ( ( abs ‘ 𝑁 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) | |
| 23 | 21 22 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) |
| 24 | 23 | ord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ¬ ( abs ‘ 𝑁 ) ∈ ℕ → ( abs ‘ 𝑁 ) = 0 ) ) |
| 25 | 19 24 | syld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 → ( abs ‘ 𝑁 ) = 0 ) ) |
| 26 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( abs ‘ 𝑁 ) = 𝑁 ) | |
| 27 | 26 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑁 ) · 𝑥 ) = ( 𝑁 · 𝑥 ) ) |
| 28 | 27 | eqeq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 29 | oveq1 | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) · 𝑥 ) = ( - 𝑁 · 𝑥 ) ) | |
| 30 | 29 | eqeq1d | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( - 𝑁 · 𝑥 ) = 0 ) ) |
| 31 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 32 | 1 3 31 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) → ( - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) ) |
| 33 | 32 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( - 𝑁 · 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) ) |
| 34 | 4 31 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 36 | 35 | eqcomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 0 = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) |
| 37 | 33 36 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( - 𝑁 · 𝑥 ) = 0 ↔ ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) ) |
| 38 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) | |
| 39 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 · 𝑥 ) ∈ 𝑋 ) |
| 40 | 39 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 · 𝑥 ) ∈ 𝑋 ) |
| 41 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
| 43 | 1 31 38 40 42 | grpinv11 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑥 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 44 | 37 43 | bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( - 𝑁 · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 45 | 30 44 | sylan9bbr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 46 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 ∈ ℝ ) |
| 48 | 47 | absord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
| 49 | 28 45 48 | mpjaodan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 50 | 49 | ralbidva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( abs ‘ 𝑁 ) · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 52 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 54 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → 𝐸 = 0 ) | |
| 55 | 54 | breq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 𝐸 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 56 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 57 | 56 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → 𝑁 ∈ ℂ ) |
| 58 | 57 | abs00ad | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) |
| 59 | 53 55 58 | 3bitr4rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝐸 ∥ 𝑁 ) ) |
| 60 | 25 51 59 | 3imtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
| 61 | elrabi | ⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → 𝐸 ∈ ℕ ) | |
| 62 | 46 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 63 | nnrp | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℝ+ ) | |
| 64 | modval | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) | |
| 65 | 62 63 64 | syl2an | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝑁 mod 𝐸 ) = ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) ) |
| 67 | 66 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) ) |
| 68 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐺 ∈ Grp ) | |
| 69 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝑁 ∈ ℤ ) | |
| 70 | nnz | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) | |
| 71 | 70 | ad2antlr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐸 ∈ ℤ ) |
| 72 | rerpdivcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 / 𝐸 ) ∈ ℝ ) | |
| 73 | 62 63 72 | syl2an | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 / 𝐸 ) ∈ ℝ ) |
| 74 | 73 | flcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) |
| 75 | 74 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) |
| 76 | 71 75 | zmulcld | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ∈ ℤ ) |
| 77 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝑥 ∈ 𝑋 ) | |
| 78 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 79 | 1 3 78 | mulgsubdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) = ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) ) |
| 80 | 68 69 76 77 79 | syl13anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 − ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) · 𝑥 ) = ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) ) |
| 81 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 𝑁 · 𝑥 ) = 0 ) | |
| 82 | dvdsmul1 | ⊢ ( ( 𝐸 ∈ ℤ ∧ ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ∈ ℤ ) → 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) | |
| 83 | 71 75 82 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) |
| 84 | 1 2 3 4 | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) ) → ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) = 0 ) |
| 85 | 68 77 83 84 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) = 0 ) |
| 86 | 81 85 | oveq12d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) = ( 0 ( -g ‘ 𝐺 ) 0 ) ) |
| 87 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐺 ∈ Grp ) | |
| 88 | 1 4 78 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝑋 ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
| 89 | 87 41 88 | syl2anc2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
| 90 | 89 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( 0 ( -g ‘ 𝐺 ) 0 ) = 0 ) |
| 91 | 86 90 | eqtrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 · 𝑥 ) ( -g ‘ 𝐺 ) ( ( 𝐸 · ( ⌊ ‘ ( 𝑁 / 𝐸 ) ) ) · 𝑥 ) ) = 0 ) |
| 92 | 67 80 91 | 3eqtrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 · 𝑥 ) = 0 ) ) → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) |
| 93 | 92 | expr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 · 𝑥 ) = 0 → ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) ) |
| 94 | 93 | ralimdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) ) |
| 95 | modlt | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 𝑁 mod 𝐸 ) < 𝐸 ) | |
| 96 | 62 63 95 | syl2an | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) < 𝐸 ) |
| 97 | zmodcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℕ0 ) | |
| 98 | 97 | adantll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℕ0 ) |
| 99 | 98 | nn0red | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝑁 mod 𝐸 ) ∈ ℝ ) |
| 100 | nnre | ⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℝ ) | |
| 101 | 100 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℝ ) |
| 102 | 99 101 | ltnled | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ( 𝑁 mod 𝐸 ) < 𝐸 ↔ ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
| 103 | 96 102 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) |
| 104 | 1 2 3 4 | gexlem2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → 𝐸 ∈ ( 1 ... ( 𝑁 mod 𝐸 ) ) ) |
| 105 | elfzle2 | ⊢ ( 𝐸 ∈ ( 1 ... ( 𝑁 mod 𝐸 ) ) → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) | |
| 106 | 104 105 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) |
| 107 | 106 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 mod 𝐸 ) ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
| 108 | 107 | impancom | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → ( ( 𝑁 mod 𝐸 ) ∈ ℕ → 𝐸 ≤ ( 𝑁 mod 𝐸 ) ) ) |
| 109 | 108 | con3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 ) → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) |
| 110 | 109 | ex | ⊢ ( 𝐺 ∈ Grp → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) ) |
| 111 | 110 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ( ¬ 𝐸 ≤ ( 𝑁 mod 𝐸 ) → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) ) |
| 112 | 103 111 | mpid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 mod 𝐸 ) · 𝑥 ) = 0 → ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ ) ) |
| 113 | elnn0 | ⊢ ( ( 𝑁 mod 𝐸 ) ∈ ℕ0 ↔ ( ( 𝑁 mod 𝐸 ) ∈ ℕ ∨ ( 𝑁 mod 𝐸 ) = 0 ) ) | |
| 114 | 98 113 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ( 𝑁 mod 𝐸 ) ∈ ℕ ∨ ( 𝑁 mod 𝐸 ) = 0 ) ) |
| 115 | 114 | ord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ¬ ( 𝑁 mod 𝐸 ) ∈ ℕ → ( 𝑁 mod 𝐸 ) = 0 ) ) |
| 116 | 94 112 115 | 3syld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → ( 𝑁 mod 𝐸 ) = 0 ) ) |
| 117 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℕ ) | |
| 118 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → 𝑁 ∈ ℤ ) | |
| 119 | dvdsval3 | ⊢ ( ( 𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ( 𝑁 mod 𝐸 ) = 0 ) ) | |
| 120 | 117 118 119 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( 𝐸 ∥ 𝑁 ↔ ( 𝑁 mod 𝐸 ) = 0 ) ) |
| 121 | 116 120 | sylibrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ ℕ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
| 122 | 61 121 | sylan2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
| 123 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | |
| 124 | 1 3 4 2 123 | gexlem1 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
| 125 | 124 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
| 126 | 60 122 125 | mpjaodan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 → 𝐸 ∥ 𝑁 ) ) |
| 127 | 8 126 | impbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |