This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in ApostolNT p. 106. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsval3 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod 𝑀 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 2 | nnne0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) |
| 4 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 7 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 8 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 9 | mod0 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑁 mod 𝑀 ) = 0 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 mod 𝑀 ) = 0 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 11 | 6 10 | bitr4d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod 𝑀 ) = 0 ) ) |