This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of group multiples over subtraction for group elements, subdir analog. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgsubdir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgsubdir.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgsubdir.d | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | mulgsubdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 − 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) − ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgsubdir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgsubdir.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgsubdir.d | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 2 5 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + - 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 𝑁 · 𝑋 ) ) ) |
| 7 | 4 6 | syl3anr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + - 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 𝑁 · 𝑋 ) ) ) |
| 8 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) | |
| 9 | 8 | zcnd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℂ ) |
| 10 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℤ ) | |
| 11 | 10 | zcnd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℂ ) |
| 12 | 9 11 | negsubd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + - 𝑁 ) = ( 𝑀 − 𝑁 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + - 𝑁 ) · 𝑋 ) = ( ( 𝑀 − 𝑁 ) · 𝑋 ) ) |
| 14 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 15 | 1 2 14 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) |
| 16 | 15 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 𝑁 · 𝑋 ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 18 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 19 | 18 | 3adant3r2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 20 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 21 | 20 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 22 | 1 5 14 3 | grpsubval | ⊢ ( ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) − ( 𝑁 · 𝑋 ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) − ( 𝑁 · 𝑋 ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) ) |
| 24 | 17 23 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 𝑁 · 𝑋 ) ) = ( ( 𝑀 · 𝑋 ) − ( 𝑁 · 𝑋 ) ) ) |
| 25 | 7 13 24 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 − 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) − ( 𝑁 · 𝑋 ) ) ) |