This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | gexlem2 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) → 𝐸 ∈ ( 1 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 · 𝑥 ) = ( 𝑁 · 𝑥 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝑁 · 𝑥 ) = 0 ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑦 = 𝑁 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 8 | 7 | elrab | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( 𝑁 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) |
| 9 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | |
| 10 | 1 3 4 2 9 | gexval | ⊢ ( 𝐺 ∈ 𝑉 → 𝐸 = if ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ) |
| 11 | ne0i | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) | |
| 12 | ifnefalse | ⊢ ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → if ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) = inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → if ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) = inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) |
| 14 | 10 13 | sylan9eq | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → 𝐸 = inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) |
| 15 | ssrab2 | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ⊆ ℕ | |
| 16 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 17 | 15 16 | sseqtri | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) |
| 18 | 11 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) |
| 19 | infssuzcl | ⊢ ( ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) | |
| 20 | 17 18 19 | sylancr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) |
| 21 | 15 20 | sselid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ) |
| 22 | infssuzle | ⊢ ( ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) | |
| 23 | 17 22 | mpan | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
| 25 | elrabi | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → 𝑁 ∈ ℕ ) | |
| 26 | 25 | nnzd | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → 𝑁 ∈ ℤ ) |
| 27 | fznn | ⊢ ( 𝑁 ∈ ℤ → ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
| 30 | 21 24 29 | mpbir2and | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ) |
| 31 | 14 30 | eqeltrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → 𝐸 ∈ ( 1 ... 𝑁 ) ) |
| 32 | 8 31 | sylan2br | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑁 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) ) → 𝐸 ∈ ( 1 ... 𝑁 ) ) |
| 33 | 32 | 3impb | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑁 · 𝑥 ) = 0 ) → 𝐸 ∈ ( 1 ... 𝑁 ) ) |