This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015) (Proof shortened by SN, 8-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpinv11.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| grpinv11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | grpinv11 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | grpinv11.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | grpinv11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | fveq2 | ⊢ ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) | |
| 7 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ↔ 𝑋 = 𝑌 ) ) |
| 12 | 6 11 | imbitrid | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 13 | fveq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) | |
| 14 | 12 13 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |