This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexval.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gexval.4 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | ||
| Assertion | gexlem1 | ⊢ ( 𝐺 ∈ 𝑉 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexval.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | gexval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | gexval.4 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 5 | gexval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | |
| 6 | 1 2 3 4 5 | gexval | ⊢ ( 𝐺 ∈ 𝑉 → 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 7 | eqeq2 | ⊢ ( 0 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( 𝐸 = 0 ↔ 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) ) | |
| 8 | 7 | imbi1d | ⊢ ( 0 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( ( 𝐸 = 0 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ↔ ( 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) ) |
| 9 | eqeq2 | ⊢ ( inf ( 𝐼 , ℝ , < ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( 𝐸 = inf ( 𝐼 , ℝ , < ) ↔ 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) ) | |
| 10 | 9 | imbi1d | ⊢ ( inf ( 𝐼 , ℝ , < ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( ( 𝐸 = inf ( 𝐼 , ℝ , < ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ↔ ( 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) ) |
| 11 | orc | ⊢ ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) | |
| 12 | 11 | expcom | ⊢ ( 𝐼 = ∅ → ( 𝐸 = 0 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( 𝐸 = 0 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) |
| 14 | ssrab2 | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ⊆ ℕ | |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | 15 | eqcomi | ⊢ ( ℤ≥ ‘ 1 ) = ℕ |
| 17 | 14 5 16 | 3sstr4i | ⊢ 𝐼 ⊆ ( ℤ≥ ‘ 1 ) |
| 18 | neqne | ⊢ ( ¬ 𝐼 = ∅ → 𝐼 ≠ ∅ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅ ) → 𝐼 ≠ ∅ ) |
| 20 | infssuzcl | ⊢ ( ( 𝐼 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝐼 ≠ ∅ ) → inf ( 𝐼 , ℝ , < ) ∈ 𝐼 ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅ ) → inf ( 𝐼 , ℝ , < ) ∈ 𝐼 ) |
| 22 | eleq1a | ⊢ ( inf ( 𝐼 , ℝ , < ) ∈ 𝐼 → ( 𝐸 = inf ( 𝐼 , ℝ , < ) → 𝐸 ∈ 𝐼 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅ ) → ( 𝐸 = inf ( 𝐼 , ℝ , < ) → 𝐸 ∈ 𝐼 ) ) |
| 24 | olc | ⊢ ( 𝐸 ∈ 𝐼 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) | |
| 25 | 23 24 | syl6 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅ ) → ( 𝐸 = inf ( 𝐼 , ℝ , < ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) |
| 26 | 8 10 13 25 | ifbothda | ⊢ ( 𝐺 ∈ 𝑉 → ( 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) ) |
| 27 | 6 26 | mpd | ⊢ ( 𝐺 ∈ 𝑉 → ( ( 𝐸 = 0 ∧ 𝐼 = ∅ ) ∨ 𝐸 ∈ 𝐼 ) ) |