This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 3 | mulgnegnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 9 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝐺 ∈ Grp ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 11 | 10 3 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 13 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 14 | 13 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 15 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 16 | 1 10 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 14 17 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 20 | 13 | negeqd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → - 𝑁 = - 0 ) |
| 21 | neg0 | ⊢ - 0 = 0 | |
| 22 | 20 21 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → - 𝑁 = 0 ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 24 | 23 17 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 25 | 12 19 24 | 3eqtr4rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 = 0 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 26 | 8 25 | jaodan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 27 | 4 26 | sylan2b | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 28 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐺 ∈ Grp ) | |
| 29 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ ) | |
| 30 | 29 | nnzd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
| 31 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑋 ∈ 𝐵 ) | |
| 32 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 33 | 28 30 31 32 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 34 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - 𝑁 · 𝑋 ) ) |
| 35 | 28 33 34 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - 𝑁 · 𝑋 ) ) |
| 36 | 1 2 3 | mulgnegnn | ⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 37 | 29 31 36 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 38 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) | |
| 39 | 38 | recnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 40 | 39 | negnegd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - - 𝑁 = 𝑁 ) |
| 41 | 40 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 42 | 37 41 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 43 | 42 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 44 | 35 43 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| 45 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) | |
| 46 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 47 | 45 46 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 48 | 27 44 47 | mpjaodan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |