This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | |- X = ( Base ` G ) |
|
| gexcl.2 | |- E = ( gEx ` G ) |
||
| gexid.3 | |- .x. = ( .g ` G ) |
||
| gexid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | gexdvds | |- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N <-> A. x e. X ( N .x. x ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl.2 | |- E = ( gEx ` G ) |
|
| 3 | gexid.3 | |- .x. = ( .g ` G ) |
|
| 4 | gexid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | 1 2 3 4 | gexdvdsi | |- ( ( G e. Grp /\ x e. X /\ E || N ) -> ( N .x. x ) = .0. ) |
| 6 | 5 | 3expia | |- ( ( G e. Grp /\ x e. X ) -> ( E || N -> ( N .x. x ) = .0. ) ) |
| 7 | 6 | ralrimdva | |- ( G e. Grp -> ( E || N -> A. x e. X ( N .x. x ) = .0. ) ) |
| 8 | 7 | adantr | |- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N -> A. x e. X ( N .x. x ) = .0. ) ) |
| 9 | noel | |- -. ( abs ` N ) e. (/) |
|
| 10 | simprr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) |
|
| 11 | 10 | eleq2d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( abs ` N ) e. (/) ) ) |
| 12 | oveq1 | |- ( y = ( abs ` N ) -> ( y .x. x ) = ( ( abs ` N ) .x. x ) ) |
|
| 13 | 12 | eqeq1d | |- ( y = ( abs ` N ) -> ( ( y .x. x ) = .0. <-> ( ( abs ` N ) .x. x ) = .0. ) ) |
| 14 | 13 | ralbidv | |- ( y = ( abs ` N ) -> ( A. x e. X ( y .x. x ) = .0. <-> A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) |
| 15 | 14 | elrab | |- ( ( abs ` N ) e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( ( abs ` N ) e. NN /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) |
| 16 | 11 15 | bitr3di | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. (/) <-> ( ( abs ` N ) e. NN /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) ) ) |
| 17 | 16 | rbaibd | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) -> ( ( abs ` N ) e. (/) <-> ( abs ` N ) e. NN ) ) |
| 18 | 9 17 | mtbii | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) /\ A. x e. X ( ( abs ` N ) .x. x ) = .0. ) -> -. ( abs ` N ) e. NN ) |
| 19 | 18 | ex | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. -> -. ( abs ` N ) e. NN ) ) |
| 20 | nn0abscl | |- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( abs ` N ) e. NN0 ) |
| 22 | elnn0 | |- ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
|
| 23 | 21 22 | sylib | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
| 24 | 23 | ord | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) |
| 25 | 19 24 | syld | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. -> ( abs ` N ) = 0 ) ) |
| 26 | simpr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( abs ` N ) = N ) |
|
| 27 | 26 | oveq1d | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( ( abs ` N ) .x. x ) = ( N .x. x ) ) |
| 28 | 27 | eqeq1d | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = N ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
| 29 | oveq1 | |- ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. x ) = ( -u N .x. x ) ) |
|
| 30 | 29 | eqeq1d | |- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( -u N .x. x ) = .0. ) ) |
| 31 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 32 | 1 3 31 | mulgneg | |- ( ( G e. Grp /\ N e. ZZ /\ x e. X ) -> ( -u N .x. x ) = ( ( invg ` G ) ` ( N .x. x ) ) ) |
| 33 | 32 | 3expa | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( -u N .x. x ) = ( ( invg ` G ) ` ( N .x. x ) ) ) |
| 34 | 4 31 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 35 | 34 | ad2antrr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 36 | 35 | eqcomd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> .0. = ( ( invg ` G ) ` .0. ) ) |
| 37 | 33 36 | eqeq12d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( -u N .x. x ) = .0. <-> ( ( invg ` G ) ` ( N .x. x ) ) = ( ( invg ` G ) ` .0. ) ) ) |
| 38 | simpll | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> G e. Grp ) |
|
| 39 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ x e. X ) -> ( N .x. x ) e. X ) |
| 40 | 39 | 3expa | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( N .x. x ) e. X ) |
| 41 | 1 4 | grpidcl | |- ( G e. Grp -> .0. e. X ) |
| 42 | 41 | ad2antrr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> .0. e. X ) |
| 43 | 1 31 38 40 42 | grpinv11 | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( ( invg ` G ) ` ( N .x. x ) ) = ( ( invg ` G ) ` .0. ) <-> ( N .x. x ) = .0. ) ) |
| 44 | 37 43 | bitrd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( -u N .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
| 45 | 30 44 | sylan9bbr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) /\ ( abs ` N ) = -u N ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
| 46 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 47 | 46 | ad2antlr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> N e. RR ) |
| 48 | 47 | absord | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 49 | 28 45 48 | mpjaodan | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ x e. X ) -> ( ( ( abs ` N ) .x. x ) = .0. <-> ( N .x. x ) = .0. ) ) |
| 50 | 49 | ralbidva | |- ( ( G e. Grp /\ N e. ZZ ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. <-> A. x e. X ( N .x. x ) = .0. ) ) |
| 51 | 50 | adantr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( ( abs ` N ) .x. x ) = .0. <-> A. x e. X ( N .x. x ) = .0. ) ) |
| 52 | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
|
| 53 | 52 | ad2antlr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( 0 || N <-> N = 0 ) ) |
| 54 | simprl | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> E = 0 ) |
|
| 55 | 54 | breq1d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( E || N <-> 0 || N ) ) |
| 56 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 57 | 56 | ad2antlr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> N e. CC ) |
| 58 | 57 | abs00ad | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
| 59 | 53 55 58 | 3bitr4rd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( ( abs ` N ) = 0 <-> E || N ) ) |
| 60 | 25 51 59 | 3imtr3d | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
| 61 | elrabi | |- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } -> E e. NN ) |
|
| 62 | 46 | adantl | |- ( ( G e. Grp /\ N e. ZZ ) -> N e. RR ) |
| 63 | nnrp | |- ( E e. NN -> E e. RR+ ) |
|
| 64 | modval | |- ( ( N e. RR /\ E e. RR+ ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
|
| 65 | 62 63 64 | syl2an | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
| 66 | 65 | adantr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( N mod E ) = ( N - ( E x. ( |_ ` ( N / E ) ) ) ) ) |
| 67 | 66 | oveq1d | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N mod E ) .x. x ) = ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) ) |
| 68 | simplll | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> G e. Grp ) |
|
| 69 | simpllr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> N e. ZZ ) |
|
| 70 | nnz | |- ( E e. NN -> E e. ZZ ) |
|
| 71 | 70 | ad2antlr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> E e. ZZ ) |
| 72 | rerpdivcl | |- ( ( N e. RR /\ E e. RR+ ) -> ( N / E ) e. RR ) |
|
| 73 | 62 63 72 | syl2an | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N / E ) e. RR ) |
| 74 | 73 | flcld | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( |_ ` ( N / E ) ) e. ZZ ) |
| 75 | 74 | adantr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( |_ ` ( N / E ) ) e. ZZ ) |
| 76 | 71 75 | zmulcld | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( E x. ( |_ ` ( N / E ) ) ) e. ZZ ) |
| 77 | simprl | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> x e. X ) |
|
| 78 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 79 | 1 3 78 | mulgsubdir | |- ( ( G e. Grp /\ ( N e. ZZ /\ ( E x. ( |_ ` ( N / E ) ) ) e. ZZ /\ x e. X ) ) -> ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) = ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) ) |
| 80 | 68 69 76 77 79 | syl13anc | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N - ( E x. ( |_ ` ( N / E ) ) ) ) .x. x ) = ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) ) |
| 81 | simprr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( N .x. x ) = .0. ) |
|
| 82 | dvdsmul1 | |- ( ( E e. ZZ /\ ( |_ ` ( N / E ) ) e. ZZ ) -> E || ( E x. ( |_ ` ( N / E ) ) ) ) |
|
| 83 | 71 75 82 | syl2anc | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> E || ( E x. ( |_ ` ( N / E ) ) ) ) |
| 84 | 1 2 3 4 | gexdvdsi | |- ( ( G e. Grp /\ x e. X /\ E || ( E x. ( |_ ` ( N / E ) ) ) ) -> ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) = .0. ) |
| 85 | 68 77 83 84 | syl3anc | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) = .0. ) |
| 86 | 81 85 | oveq12d | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) = ( .0. ( -g ` G ) .0. ) ) |
| 87 | simpll | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> G e. Grp ) |
|
| 88 | 1 4 78 | grpsubid | |- ( ( G e. Grp /\ .0. e. X ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
| 89 | 87 41 88 | syl2anc2 | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
| 90 | 89 | adantr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( .0. ( -g ` G ) .0. ) = .0. ) |
| 91 | 86 90 | eqtrd | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N .x. x ) ( -g ` G ) ( ( E x. ( |_ ` ( N / E ) ) ) .x. x ) ) = .0. ) |
| 92 | 67 80 91 | 3eqtrd | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ ( x e. X /\ ( N .x. x ) = .0. ) ) -> ( ( N mod E ) .x. x ) = .0. ) |
| 93 | 92 | expr | |- ( ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) /\ x e. X ) -> ( ( N .x. x ) = .0. -> ( ( N mod E ) .x. x ) = .0. ) ) |
| 94 | 93 | ralimdva | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> A. x e. X ( ( N mod E ) .x. x ) = .0. ) ) |
| 95 | modlt | |- ( ( N e. RR /\ E e. RR+ ) -> ( N mod E ) < E ) |
|
| 96 | 62 63 95 | syl2an | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) < E ) |
| 97 | zmodcl | |- ( ( N e. ZZ /\ E e. NN ) -> ( N mod E ) e. NN0 ) |
|
| 98 | 97 | adantll | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) e. NN0 ) |
| 99 | 98 | nn0red | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( N mod E ) e. RR ) |
| 100 | nnre | |- ( E e. NN -> E e. RR ) |
|
| 101 | 100 | adantl | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> E e. RR ) |
| 102 | 99 101 | ltnled | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( ( N mod E ) < E <-> -. E <_ ( N mod E ) ) ) |
| 103 | 96 102 | mpbid | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> -. E <_ ( N mod E ) ) |
| 104 | 1 2 3 4 | gexlem2 | |- ( ( G e. Grp /\ ( N mod E ) e. NN /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> E e. ( 1 ... ( N mod E ) ) ) |
| 105 | elfzle2 | |- ( E e. ( 1 ... ( N mod E ) ) -> E <_ ( N mod E ) ) |
|
| 106 | 104 105 | syl | |- ( ( G e. Grp /\ ( N mod E ) e. NN /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> E <_ ( N mod E ) ) |
| 107 | 106 | 3expia | |- ( ( G e. Grp /\ ( N mod E ) e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> E <_ ( N mod E ) ) ) |
| 108 | 107 | impancom | |- ( ( G e. Grp /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> ( ( N mod E ) e. NN -> E <_ ( N mod E ) ) ) |
| 109 | 108 | con3d | |- ( ( G e. Grp /\ A. x e. X ( ( N mod E ) .x. x ) = .0. ) -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) |
| 110 | 109 | ex | |- ( G e. Grp -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) ) |
| 111 | 110 | ad2antrr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> ( -. E <_ ( N mod E ) -> -. ( N mod E ) e. NN ) ) ) |
| 112 | 103 111 | mpid | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( ( N mod E ) .x. x ) = .0. -> -. ( N mod E ) e. NN ) ) |
| 113 | elnn0 | |- ( ( N mod E ) e. NN0 <-> ( ( N mod E ) e. NN \/ ( N mod E ) = 0 ) ) |
|
| 114 | 98 113 | sylib | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( ( N mod E ) e. NN \/ ( N mod E ) = 0 ) ) |
| 115 | 114 | ord | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( -. ( N mod E ) e. NN -> ( N mod E ) = 0 ) ) |
| 116 | 94 112 115 | 3syld | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> ( N mod E ) = 0 ) ) |
| 117 | simpr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> E e. NN ) |
|
| 118 | simplr | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> N e. ZZ ) |
|
| 119 | dvdsval3 | |- ( ( E e. NN /\ N e. ZZ ) -> ( E || N <-> ( N mod E ) = 0 ) ) |
|
| 120 | 117 118 119 | syl2anc | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( E || N <-> ( N mod E ) = 0 ) ) |
| 121 | 116 120 | sylibrd | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. NN ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
| 122 | 61 121 | sylan2 | |- ( ( ( G e. Grp /\ N e. ZZ ) /\ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
| 123 | eqid | |- { y e. NN | A. x e. X ( y .x. x ) = .0. } = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
|
| 124 | 1 3 4 2 123 | gexlem1 | |- ( G e. Grp -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
| 125 | 124 | adantr | |- ( ( G e. Grp /\ N e. ZZ ) -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
| 126 | 60 122 125 | mpjaodan | |- ( ( G e. Grp /\ N e. ZZ ) -> ( A. x e. X ( N .x. x ) = .0. -> E || N ) ) |
| 127 | 8 126 | impbid | |- ( ( G e. Grp /\ N e. ZZ ) -> ( E || N <-> A. x e. X ( N .x. x ) = .0. ) ) |