This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvid.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| grpinvid.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvid.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | grpinvid.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 3 1 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 3 5 1 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 7 | 4 6 | mpdan | ⊢ ( 𝐺 ∈ Grp → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 8 | 3 5 1 2 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ 0 ) = 0 ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) ) |
| 9 | 4 4 8 | mpd3an23 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑁 ‘ 0 ) = 0 ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |