This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → 𝐸 ∥ 𝑁 ) | |
| 6 | dvdszrcl | ⊢ ( 𝐸 ∥ 𝑁 → ( 𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 7 | divides | ⊢ ( ( 𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐸 ∥ 𝑁 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐸 ) = 𝑁 ) ) | |
| 8 | 6 7 | biadanii | ⊢ ( 𝐸 ∥ 𝑁 ↔ ( ( 𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐸 ) = 𝑁 ) ) |
| 9 | 5 8 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( ( 𝐸 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐸 ) = 𝑁 ) ) |
| 10 | 9 | simprd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐸 ) = 𝑁 ) |
| 11 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 12 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 13 | 9 | simplld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → 𝐸 ∈ ℤ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℤ ) |
| 15 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ 𝑋 ) | |
| 16 | 1 3 | mulgass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝐸 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑥 · 𝐸 ) · 𝐴 ) = ( 𝑥 · ( 𝐸 · 𝐴 ) ) ) |
| 17 | 11 12 14 15 16 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐸 ) · 𝐴 ) = ( 𝑥 · ( 𝐸 · 𝐴 ) ) ) |
| 18 | 1 2 3 4 | gexid | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 · 𝐴 ) = 0 ) |
| 19 | 15 18 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐸 · 𝐴 ) = 0 ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · ( 𝐸 · 𝐴 ) ) = ( 𝑥 · 0 ) ) |
| 21 | 1 3 4 | mulgz | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 0 ) = 0 ) |
| 22 | 21 | 3ad2antl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 0 ) = 0 ) |
| 23 | 17 20 22 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐸 ) · 𝐴 ) = 0 ) |
| 24 | oveq1 | ⊢ ( ( 𝑥 · 𝐸 ) = 𝑁 → ( ( 𝑥 · 𝐸 ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝑥 · 𝐸 ) = 𝑁 → ( ( ( 𝑥 · 𝐸 ) · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 26 | 23 25 | syl5ibcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝐸 ) = 𝑁 → ( 𝑁 · 𝐴 ) = 0 ) ) |
| 27 | 26 | rexlimdva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐸 ) = 𝑁 → ( 𝑁 · 𝐴 ) = 0 ) ) |
| 28 | 10 27 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 ) |