This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | ||
| ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | ||
| ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | ||
| ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | ||
| ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | ||
| ftc1.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| ftc1.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| ftc1.fc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) | ||
| ftc1.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ftc1.x2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ) | ||
| ftc1.y1 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ftc1.y2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑅 ) | ||
| Assertion | ftc1lem4 | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | |
| 10 | ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | |
| 11 | ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | |
| 12 | ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | |
| 13 | ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 14 | ftc1.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 15 | ftc1.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 16 | ftc1.fc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) | |
| 17 | ftc1.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 18 | ftc1.x2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ) | |
| 19 | ftc1.y1 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 20 | ftc1.y2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑅 ) | |
| 21 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ V ) | |
| 22 | 2 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 23 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) | |
| 24 | 2 3 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
| 25 | 17 24 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) |
| 26 | 25 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝑋 ) |
| 27 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) | |
| 28 | 22 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
| 29 | 3 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 30 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) | |
| 31 | 2 3 30 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
| 32 | 19 31 | mpbid | ⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
| 33 | 32 | simp3d | ⊢ ( 𝜑 → 𝑌 ≤ 𝐵 ) |
| 34 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑌 ≤ 𝐵 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 35 | 29 33 34 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 36 | 28 35 | sstrd | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 37 | 36 5 | sstrd | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ 𝐷 ) |
| 38 | 37 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 ∈ 𝐷 ) |
| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 40 | 39 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 41 | 38 40 | syldan | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 42 | ioombl | ⊢ ( 𝑋 (,) 𝑌 ) ∈ dom vol | |
| 43 | 42 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ dom vol ) |
| 44 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) | |
| 45 | 39 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 46 | 45 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 47 | 37 43 44 46 | iblss | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 48 | 5 8 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 49 | 39 48 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 51 | fconstmpt | ⊢ ( ( 𝑋 (,) 𝑌 ) × { ( 𝐹 ‘ 𝐶 ) } ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝐶 ) ) | |
| 52 | mblvol | ⊢ ( ( 𝑋 (,) 𝑌 ) ∈ dom vol → ( vol ‘ ( 𝑋 (,) 𝑌 ) ) = ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) ) | |
| 53 | 42 52 | ax-mp | ⊢ ( vol ‘ ( 𝑋 (,) 𝑌 ) ) = ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) |
| 54 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 55 | 54 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
| 56 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 57 | 2 3 56 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 58 | 57 17 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 59 | 57 19 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 60 | iccmbl | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ∈ dom vol ) | |
| 61 | 58 59 60 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ∈ dom vol ) |
| 62 | mblss | ⊢ ( ( 𝑋 [,] 𝑌 ) ∈ dom vol → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 63 | 61 62 | syl | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 64 | mblvol | ⊢ ( ( 𝑋 [,] 𝑌 ) ∈ dom vol → ( vol ‘ ( 𝑋 [,] 𝑌 ) ) = ( vol* ‘ ( 𝑋 [,] 𝑌 ) ) ) | |
| 65 | 61 64 | syl | ⊢ ( 𝜑 → ( vol ‘ ( 𝑋 [,] 𝑌 ) ) = ( vol* ‘ ( 𝑋 [,] 𝑌 ) ) ) |
| 66 | iccvolcl | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( vol ‘ ( 𝑋 [,] 𝑌 ) ) ∈ ℝ ) | |
| 67 | 58 59 66 | syl2anc | ⊢ ( 𝜑 → ( vol ‘ ( 𝑋 [,] 𝑌 ) ) ∈ ℝ ) |
| 68 | 65 67 | eqeltrrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝑋 [,] 𝑌 ) ) ∈ ℝ ) |
| 69 | ovolsscl | ⊢ ( ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) ∧ ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑋 [,] 𝑌 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ) | |
| 70 | 55 63 68 69 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ) |
| 71 | 53 70 | eqeltrid | ⊢ ( 𝜑 → ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ) |
| 72 | iblconst | ⊢ ( ( ( 𝑋 (,) 𝑌 ) ∈ dom vol ∧ ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ( ( 𝑋 (,) 𝑌 ) × { ( 𝐹 ‘ 𝐶 ) } ) ∈ 𝐿1 ) | |
| 73 | 43 71 49 72 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 (,) 𝑌 ) × { ( 𝐹 ‘ 𝐶 ) } ) ∈ 𝐿1 ) |
| 74 | 51 73 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝐶 ) ) ∈ 𝐿1 ) |
| 75 | 41 47 50 74 | iblsub | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ∈ 𝐿1 ) |
| 76 | 21 75 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ∈ ℂ ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ∈ ℂ ) |
| 78 | 59 58 | resubcld | ⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 80 | 79 | recnd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 81 | 58 59 | posdifd | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ 0 < ( 𝑌 − 𝑋 ) ) ) |
| 82 | 81 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ( 𝑌 − 𝑋 ) ) |
| 83 | 82 | gt0ne0d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑋 ) ≠ 0 ) |
| 84 | 77 80 83 | divcld | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) ∈ ℂ ) |
| 85 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 86 | ltle | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 < 𝑌 → 𝑋 ≤ 𝑌 ) ) | |
| 87 | 58 59 86 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 88 | 87 | imp | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| 89 | 1 2 3 4 5 6 7 39 17 19 | ftc1lem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 90 | 88 89 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 91 | 41 50 | npcand | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) + ( 𝐹 ‘ 𝐶 ) ) = ( 𝐹 ‘ 𝑡 ) ) |
| 92 | 91 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) + ( 𝐹 ‘ 𝐶 ) ) d 𝑡 = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 93 | 41 50 | subcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 94 | 93 75 50 74 | itgadd | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) + ( 𝐹 ‘ 𝐶 ) ) d 𝑡 = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 ) ) |
| 95 | 92 94 | eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 ) ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 ) ) |
| 97 | itgconst | ⊢ ( ( ( 𝑋 (,) 𝑌 ) ∈ dom vol ∧ ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 = ( ( 𝐹 ‘ 𝐶 ) · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) | |
| 98 | 43 71 49 97 | syl3anc | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 = ( ( 𝐹 ‘ 𝐶 ) · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 = ( ( 𝐹 ‘ 𝐶 ) · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) |
| 100 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ ) |
| 101 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ ) |
| 102 | ovolioo | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌 ) → ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) | |
| 103 | 100 101 88 102 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( vol* ‘ ( 𝑋 (,) 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 104 | 53 103 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( vol ‘ ( 𝑋 (,) 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 105 | 104 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ‘ 𝐶 ) · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) |
| 106 | 99 105 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 = ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) |
| 107 | 106 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝐶 ) d 𝑡 ) = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) ) |
| 108 | 90 96 107 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) ) |
| 109 | 108 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) = ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) / ( 𝑌 − 𝑋 ) ) ) |
| 110 | 85 80 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ∈ ℂ ) |
| 111 | 77 110 80 83 | divdird | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 + ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) ) / ( 𝑌 − 𝑋 ) ) = ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) + ( ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) |
| 112 | 85 80 83 | divcan4d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) = ( 𝐹 ‘ 𝐶 ) ) |
| 113 | 112 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) + ( ( ( 𝐹 ‘ 𝐶 ) · ( 𝑌 − 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) = ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) + ( 𝐹 ‘ 𝐶 ) ) ) |
| 114 | 109 111 113 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) = ( ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) + ( 𝐹 ‘ 𝐶 ) ) ) |
| 115 | 84 85 114 | mvrraddd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) = ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) ) |
| 116 | 115 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) ) ) |
| 117 | 77 80 83 | absdivd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 / ( 𝑌 − 𝑋 ) ) ) = ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( abs ‘ ( 𝑌 − 𝑋 ) ) ) ) |
| 118 | 0re | ⊢ 0 ∈ ℝ | |
| 119 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑌 − 𝑋 ) ∈ ℝ ) → ( 0 < ( 𝑌 − 𝑋 ) → 0 ≤ ( 𝑌 − 𝑋 ) ) ) | |
| 120 | 118 79 119 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 0 < ( 𝑌 − 𝑋 ) → 0 ≤ ( 𝑌 − 𝑋 ) ) ) |
| 121 | 82 120 | mpd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 ≤ ( 𝑌 − 𝑋 ) ) |
| 122 | 79 121 | absidd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( 𝑌 − 𝑋 ) ) = ( 𝑌 − 𝑋 ) ) |
| 123 | 122 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( abs ‘ ( 𝑌 − 𝑋 ) ) ) = ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( 𝑌 − 𝑋 ) ) ) |
| 124 | 116 117 123 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( 𝑌 − 𝑋 ) ) ) |
| 125 | 76 | abscld | ⊢ ( 𝜑 → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ∈ ℝ ) |
| 126 | 125 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ∈ ℝ ) |
| 127 | 93 | abscld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 128 | 21 75 | iblabs | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ∈ 𝐿1 ) |
| 129 | 127 128 | itgrecl | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ∈ ℝ ) |
| 130 | 129 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ∈ ℝ ) |
| 131 | 14 | rpred | ⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 132 | 78 131 | remulcld | ⊢ ( 𝜑 → ( ( 𝑌 − 𝑋 ) · 𝐸 ) ∈ ℝ ) |
| 133 | 132 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝑌 − 𝑋 ) · 𝐸 ) ∈ ℝ ) |
| 134 | 93 75 | itgabs | ⊢ ( 𝜑 → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ≤ ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) |
| 135 | 134 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ≤ ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) |
| 136 | 82 104 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) |
| 137 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐸 ∈ ℝ ) |
| 138 | fconstmpt | ⊢ ( ( 𝑋 (,) 𝑌 ) × { 𝐸 } ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) | |
| 139 | 131 | recnd | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 140 | iblconst | ⊢ ( ( ( 𝑋 (,) 𝑌 ) ∈ dom vol ∧ ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ∧ 𝐸 ∈ ℂ ) → ( ( 𝑋 (,) 𝑌 ) × { 𝐸 } ) ∈ 𝐿1 ) | |
| 141 | 43 71 139 140 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 (,) 𝑌 ) × { 𝐸 } ) ∈ 𝐿1 ) |
| 142 | 138 141 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
| 143 | 137 142 127 128 | iblsub | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) ∈ 𝐿1 ) |
| 144 | 143 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) ∈ 𝐿1 ) |
| 145 | 6 48 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 146 | 15 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 147 | 145 146 | resubcld | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ℝ ) |
| 148 | 147 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐶 − 𝑅 ) ∈ ℝ ) |
| 149 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑋 ∈ ℝ ) |
| 150 | 37 6 | sstrd | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ℝ ) |
| 151 | 150 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 ∈ ℝ ) |
| 152 | 58 145 146 | absdifltd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ↔ ( ( 𝐶 − 𝑅 ) < 𝑋 ∧ 𝑋 < ( 𝐶 + 𝑅 ) ) ) ) |
| 153 | 18 152 | mpbid | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) < 𝑋 ∧ 𝑋 < ( 𝐶 + 𝑅 ) ) ) |
| 154 | 153 | simpld | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) < 𝑋 ) |
| 155 | 154 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐶 − 𝑅 ) < 𝑋 ) |
| 156 | eliooord | ⊢ ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) → ( 𝑋 < 𝑡 ∧ 𝑡 < 𝑌 ) ) | |
| 157 | 156 | adantl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝑋 < 𝑡 ∧ 𝑡 < 𝑌 ) ) |
| 158 | 157 | simpld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑋 < 𝑡 ) |
| 159 | 148 149 151 155 158 | lttrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐶 − 𝑅 ) < 𝑡 ) |
| 160 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑌 ∈ ℝ ) |
| 161 | 145 146 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ℝ ) |
| 162 | 161 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐶 + 𝑅 ) ∈ ℝ ) |
| 163 | 157 | simprd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 < 𝑌 ) |
| 164 | 59 145 146 | absdifltd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑌 − 𝐶 ) ) < 𝑅 ↔ ( ( 𝐶 − 𝑅 ) < 𝑌 ∧ 𝑌 < ( 𝐶 + 𝑅 ) ) ) ) |
| 165 | 20 164 | mpbid | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) < 𝑌 ∧ 𝑌 < ( 𝐶 + 𝑅 ) ) ) |
| 166 | 165 | simprd | ⊢ ( 𝜑 → 𝑌 < ( 𝐶 + 𝑅 ) ) |
| 167 | 166 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑌 < ( 𝐶 + 𝑅 ) ) |
| 168 | 151 160 162 163 167 | lttrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 < ( 𝐶 + 𝑅 ) ) |
| 169 | 145 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ ℝ ) |
| 170 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑅 ∈ ℝ ) |
| 171 | 151 169 170 | absdifltd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( abs ‘ ( 𝑡 − 𝐶 ) ) < 𝑅 ↔ ( ( 𝐶 − 𝑅 ) < 𝑡 ∧ 𝑡 < ( 𝐶 + 𝑅 ) ) ) ) |
| 172 | 159 168 171 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( abs ‘ ( 𝑡 − 𝐶 ) ) < 𝑅 ) |
| 173 | fvoveq1 | ⊢ ( 𝑦 = 𝑡 → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( abs ‘ ( 𝑡 − 𝐶 ) ) ) | |
| 174 | 173 | breq1d | ⊢ ( 𝑦 = 𝑡 → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 ↔ ( abs ‘ ( 𝑡 − 𝐶 ) ) < 𝑅 ) ) |
| 175 | 174 | imbrov2fvoveq | ⊢ ( 𝑦 = 𝑡 → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ↔ ( ( abs ‘ ( 𝑡 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) ) |
| 176 | 16 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) |
| 177 | 176 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) |
| 178 | 175 177 38 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( abs ‘ ( 𝑡 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) |
| 179 | 172 178 | mpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 180 | difrp | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ↔ ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ∈ ℝ+ ) ) | |
| 181 | 127 137 180 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ↔ ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ∈ ℝ+ ) ) |
| 182 | 179 181 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ∈ ℝ+ ) |
| 183 | 182 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 < 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ∈ ℝ+ ) |
| 184 | 136 144 183 | itggt0 | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) d 𝑡 ) |
| 185 | 137 142 127 128 | itgsub | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) d 𝑡 = ( ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) |
| 186 | 185 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) d 𝑡 = ( ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) |
| 187 | itgconst | ⊢ ( ( ( 𝑋 (,) 𝑌 ) ∈ dom vol ∧ ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ∈ ℝ ∧ 𝐸 ∈ ℂ ) → ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 = ( 𝐸 · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) | |
| 188 | 43 71 139 187 | syl3anc | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 = ( 𝐸 · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) |
| 189 | 188 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 = ( 𝐸 · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) ) |
| 190 | 104 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝐸 · ( vol ‘ ( 𝑋 (,) 𝑌 ) ) ) = ( 𝐸 · ( 𝑌 − 𝑋 ) ) ) |
| 191 | 78 | recnd | ⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 192 | 139 191 | mulcomd | ⊢ ( 𝜑 → ( 𝐸 · ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 193 | 192 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝐸 · ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 194 | 189 190 193 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 = ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 195 | 194 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ∫ ( 𝑋 (,) 𝑌 ) 𝐸 d 𝑡 − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) = ( ( ( 𝑌 − 𝑋 ) · 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) |
| 196 | 186 195 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐸 − ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) d 𝑡 = ( ( ( 𝑌 − 𝑋 ) · 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) |
| 197 | 184 196 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ( ( ( 𝑌 − 𝑋 ) · 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) |
| 198 | 129 132 | posdifd | ⊢ ( 𝜑 → ( ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ↔ 0 < ( ( ( 𝑌 − 𝑋 ) · 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) ) |
| 199 | 198 | biimpar | ⊢ ( ( 𝜑 ∧ 0 < ( ( ( 𝑌 − 𝑋 ) · 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 ) ) → ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 200 | 197 199 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ∫ ( 𝑋 (,) 𝑌 ) ( abs ‘ ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) ) d 𝑡 < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 201 | 126 130 133 135 200 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) |
| 202 | 77 | abscld | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ∈ ℝ ) |
| 203 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝐸 ∈ ℝ ) |
| 204 | ltdivmul | ⊢ ( ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ( ( 𝑌 − 𝑋 ) ∈ ℝ ∧ 0 < ( 𝑌 − 𝑋 ) ) ) → ( ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( 𝑌 − 𝑋 ) ) < 𝐸 ↔ ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) ) | |
| 205 | 202 203 79 82 204 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( 𝑌 − 𝑋 ) ) < 𝐸 ↔ ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) < ( ( 𝑌 − 𝑋 ) · 𝐸 ) ) ) |
| 206 | 201 205 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( abs ‘ ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐹 ‘ 𝑡 ) − ( 𝐹 ‘ 𝐶 ) ) d 𝑡 ) / ( 𝑌 − 𝑋 ) ) < 𝐸 ) |
| 207 | 124 206 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |