This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | ||
| ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | ||
| ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | ||
| ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ftc1lem3 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | |
| 10 | ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | |
| 11 | ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | |
| 12 | ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | |
| 13 | 12 | cnfldtopon | ⊢ 𝐿 ∈ ( TopOn ‘ ℂ ) |
| 14 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 15 | 6 14 | sstrdi | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 16 | resttopon | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐿 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( 𝜑 → ( 𝐿 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 18 | 11 17 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐷 ) ) |
| 19 | 13 | a1i | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ℂ ) ) |
| 20 | cnpf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐷 ) ∧ 𝐿 ∈ ( TopOn ‘ ℂ ) ∧ 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 21 | 18 19 9 20 | syl3anc | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |