This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at C with derivative F ( C ) if the original function is continuous at C . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | ||
| ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | ||
| ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | ||
| ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ftc1 | ⊢ ( 𝜑 → 𝐶 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | |
| 10 | ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | |
| 11 | ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | |
| 12 | ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | |
| 13 | 12 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐿 ↾t ℝ ) |
| 14 | 10 13 | eqtr4i | ⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 15 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 16 | 14 15 | eqeltri | ⊢ 𝐽 ∈ Top |
| 17 | 16 | a1i | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 18 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 19 | 2 3 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 21 | 20 14 | eleqtrri | ⊢ ( 𝐴 (,) 𝐵 ) ∈ 𝐽 |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ) |
| 23 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 25 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 26 | 14 | unieqi | ⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 27 | 25 26 | eqtr4i | ⊢ ℝ = ∪ 𝐽 |
| 28 | 27 | ssntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ∧ ( ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 29 | 17 19 22 24 28 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 30 | 29 8 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 31 | eqid | ⊢ ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 32 | 1 2 3 4 5 6 7 8 9 10 11 12 31 | ftc1lem6 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 33 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 34 | 33 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 36 | 1 2 3 4 5 6 7 35 | ftc1lem2 | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 37 | 10 12 31 34 36 19 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 38 | 30 32 37 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ( ℝ D 𝐺 ) ( 𝐹 ‘ 𝐶 ) ) |