This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | itgabs | ⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | 1 2 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 4 | 3 | cjcld | ⊢ ( 𝜑 → ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 5 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 9 | nfv | ⊢ Ⅎ 𝑦 𝐵 ∈ ℂ | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 11 | 10 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 12 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 14 | 9 11 13 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ↔ ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 15 | 8 14 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 16 | 15 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 17 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 18 | 17 10 12 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 19 | 18 2 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ 𝐿1 ) |
| 20 | 4 16 19 | iblmulc2 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 22 | 21 16 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 23 | 22 | iblcn | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ∧ ( 𝑦 ∈ 𝐴 ↦ ( ℑ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) ) ) |
| 24 | 20 23 | mpbid | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ∧ ( 𝑦 ∈ 𝐴 ↦ ( ℑ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) ) |
| 25 | 24 | simpld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 26 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ V ) | |
| 27 | 26 20 | iblabs | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 28 | 22 | recld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 29 | 22 | abscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 30 | 22 | releabsd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ≤ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 31 | 25 27 28 29 30 | itgle | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ≤ ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 32 | 3 | abscld | ⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 34 | 33 | sqvald | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 35 | 3 | absvalsqd | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ( ∫ 𝐴 𝐵 d 𝑥 · ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 36 | 3 4 | mulcomd | ⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 · ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 37 | 12 17 10 | cbvitg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 |
| 38 | 37 | oveq2i | ⊢ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 ) |
| 39 | 4 16 19 | itgmulc2 | ⊢ ( 𝜑 → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 40 | 38 39 | eqtrid | ⊢ ( 𝜑 → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 41 | 35 36 40 | 3eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 42 | 41 | fveq2d | ⊢ ( 𝜑 → ( ℜ ‘ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) = ( ℜ ‘ ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) ) |
| 43 | 32 | resqcld | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 44 | 43 | rered | ⊢ ( 𝜑 → ( ℜ ‘ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) |
| 45 | 26 20 | itgre | ⊢ ( 𝜑 → ( ℜ ‘ ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 46 | 42 44 45 | 3eqtr3d | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 47 | 34 46 | eqtr3d | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 48 | 12 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 49 | nfcv | ⊢ Ⅎ 𝑦 ( abs ‘ 𝐵 ) | |
| 50 | nfcv | ⊢ Ⅎ 𝑥 abs | |
| 51 | 50 10 | nffv | ⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 52 | 48 49 51 | cbvitg | ⊢ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 |
| 53 | 52 | oveq2i | ⊢ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 54 | 16 | abscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 55 | 16 19 | iblabs | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ) |
| 56 | 33 54 55 | itgmulc2 | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 57 | 21 16 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 58 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 59 | 58 | abscjd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 61 | 57 60 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 62 | 61 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 = ∫ 𝐴 ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 63 | 56 62 | eqtr4d | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 64 | 53 63 | eqtrid | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 65 | 31 47 64 | 3brtr4d | ⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 66 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 67 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) |
| 68 | 7 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 69 | 1 2 | iblabs | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 70 | 68 69 | itgrecl | ⊢ ( 𝜑 → ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 72 | simpr | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) | |
| 73 | lemul2 | ⊢ ( ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ∧ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ∧ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) ) | |
| 74 | 67 71 67 72 73 | syl112anc | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) ) |
| 75 | 66 74 | mpbird | ⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |
| 76 | 75 | ex | ⊢ ( 𝜑 → ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 77 | 7 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 78 | 69 68 77 | itgge0 | ⊢ ( 𝜑 → 0 ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |
| 79 | breq1 | ⊢ ( 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( 0 ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) | |
| 80 | 78 79 | syl5ibcom | ⊢ ( 𝜑 → ( 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 81 | 3 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 82 | 0re | ⊢ 0 ∈ ℝ | |
| 83 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) → ( 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↔ ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) ) | |
| 84 | 82 32 83 | sylancr | ⊢ ( 𝜑 → ( 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↔ ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) ) |
| 85 | 81 84 | mpbid | ⊢ ( 𝜑 → ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 86 | 76 80 85 | mpjaod | ⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |