This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | ||
| ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | ||
| ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | ||
| ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | ||
| ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | ||
| ftc1.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| ftc1.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| ftc1.fc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) | ||
| ftc1.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ftc1.x2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ) | ||
| Assertion | ftc1lem5 | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | ftc1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) | |
| 10 | ftc1.j | ⊢ 𝐽 = ( 𝐿 ↾t ℝ ) | |
| 11 | ftc1.k | ⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) | |
| 12 | ftc1.l | ⊢ 𝐿 = ( TopOpen ‘ ℂfld ) | |
| 13 | ftc1.h | ⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) | |
| 14 | ftc1.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 15 | ftc1.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 16 | ftc1.fc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) | |
| 17 | ftc1.x1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 18 | ftc1.x2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ) | |
| 19 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 20 | 2 3 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 21 | 20 17 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 22 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 23 | 22 8 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 24 | 20 23 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 | 21 24 | lttri2d | ⊢ ( 𝜑 → ( 𝑋 ≠ 𝐶 ↔ ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) ) |
| 26 | 25 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) |
| 27 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 28 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ℝ ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 < 𝐶 ) | |
| 30 | 28 29 | ltned | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ≠ 𝐶 ) |
| 31 | eldifsn | ⊢ ( 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↔ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) ) | |
| 32 | 27 30 31 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) |
| 33 | fveq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
| 35 | oveq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 − 𝐶 ) = ( 𝑋 − 𝐶 ) ) | |
| 36 | 34 35 | oveq12d | ⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 37 | ovex | ⊢ ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ∈ V | |
| 38 | 36 13 37 | fvmpt | ⊢ ( 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 39 | 32 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 41 | 1 2 3 4 5 6 7 40 | ftc1lem2 | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 42 | 41 17 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 43 | 41 23 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 44 | 42 43 | subcld | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 46 | 21 | recnd | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 47 | 24 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 48 | 46 47 | subcld | ⊢ ( 𝜑 → ( 𝑋 − 𝐶 ) ∈ ℂ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝑋 − 𝐶 ) ∈ ℂ ) |
| 50 | 46 47 | subeq0ad | ⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) = 0 ↔ 𝑋 = 𝐶 ) ) |
| 51 | 50 | necon3bid | ⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) ≠ 0 ↔ 𝑋 ≠ 𝐶 ) ) |
| 52 | 51 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( 𝑋 − 𝐶 ) ≠ 0 ) |
| 53 | 30 52 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝑋 − 𝐶 ) ≠ 0 ) |
| 54 | 45 49 53 | div2negd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 55 | 42 43 | negsubdi2d | ⊢ ( 𝜑 → - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) ) |
| 56 | 46 47 | negsubdi2d | ⊢ ( 𝜑 → - ( 𝑋 − 𝐶 ) = ( 𝐶 − 𝑋 ) ) |
| 57 | 55 56 | oveq12d | ⊢ ( 𝜑 → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 59 | 39 54 58 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 60 | 59 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 61 | 47 | subidd | ⊢ ( 𝜑 → ( 𝐶 − 𝐶 ) = 0 ) |
| 62 | 61 | abs00bd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐶 ) ) = 0 ) |
| 63 | 15 | rpgt0d | ⊢ ( 𝜑 → 0 < 𝑅 ) |
| 64 | 62 63 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐶 ) ) < 𝑅 ) |
| 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 | ftc1lem4 | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 66 | 60 65 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 67 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 68 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝐶 ∈ ℝ ) |
| 69 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝐶 < 𝑋 ) | |
| 70 | 68 69 | gtned | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ≠ 𝐶 ) |
| 71 | 67 70 31 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) |
| 72 | 71 38 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 73 | 72 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 | ftc1lem4 | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 75 | 73 74 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 76 | 66 75 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 77 | 26 76 | syldan | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |