This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itggt0.1 | ⊢ ( 𝜑 → 0 < ( vol ‘ 𝐴 ) ) | |
| itggt0.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itggt0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | ||
| Assertion | itggt0 | ⊢ ( 𝜑 → 0 < ∫ 𝐴 𝐵 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itggt0.1 | ⊢ ( 𝜑 → 0 < ( vol ‘ 𝐴 ) ) | |
| 2 | itggt0.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itggt0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | |
| 4 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 6 | 5 3 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 7 | 3 | rpred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 8 | 3 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 9 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 10 | 7 8 9 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 11 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 13 | 10 12 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 15 | 14 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 16 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 18 | rembl | ⊢ ℝ ∈ dom vol | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 20 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 21 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 23 | 22 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 0 ) |
| 24 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) | |
| 25 | 24 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 26 | 25 5 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 27 | 17 19 20 23 26 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 28 | 3 | rpgt0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 < 𝐵 ) |
| 29 | 17 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 30 | 24 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) = 𝐵 ) |
| 31 | 30 3 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ+ ) |
| 32 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 33 | 32 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ+ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 34 | 29 31 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 35 | 34 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) = 𝐵 ) |
| 36 | 28 35 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) ) |
| 38 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 39 | nfcv | ⊢ Ⅎ 𝑥 < | |
| 40 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) | |
| 41 | 38 39 40 | nfbr | ⊢ Ⅎ 𝑥 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) |
| 42 | nfv | ⊢ Ⅎ 𝑦 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) | |
| 43 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) ) | |
| 44 | 43 | breq2d | ⊢ ( 𝑦 = 𝑥 → ( 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) ↔ 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) ) ) |
| 45 | 41 42 44 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑥 ) ) |
| 46 | 37 45 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) ) |
| 47 | 46 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 0 < ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ‘ 𝑦 ) ) |
| 48 | 6 1 15 27 47 | itg2gt0 | ⊢ ( 𝜑 → 0 < ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 49 | 7 2 8 | itgposval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐵 , 0 ) ) ) ) |
| 50 | 48 49 | breqtrrd | ⊢ ( 𝜑 → 0 < ∫ 𝐴 𝐵 d 𝑥 ) |