This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 𝐵 d 𝑥 = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑦 = ( ℜ ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = ( ℜ ‘ 𝐵 ) ) | |
| 2 | 1 | itgeq2dv | ⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ∫ 𝐴 𝑦 d 𝑥 = ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) |
| 3 | oveq1 | ⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑦 = ( ℜ ‘ 𝐵 ) → ( ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ↔ ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 5 | simplr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 6 | fconstmpt | ⊢ ( 𝐴 × { 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) | |
| 7 | simpl1 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ dom vol ) | |
| 8 | simp2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( vol ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
| 10 | simpr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 11 | 10 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 12 | iblconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 × { 𝑦 } ) ∈ 𝐿1 ) | |
| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 × { 𝑦 } ) ∈ 𝐿1 ) |
| 14 | 6 13 | eqeltrrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) ∈ 𝐿1 ) |
| 15 | 5 14 | itgrevallem1 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ∫ 𝐴 𝑦 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) ) |
| 16 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) | |
| 17 | 16 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) |
| 18 | 17 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) |
| 19 | 0re | ⊢ 0 ∈ ℝ | |
| 20 | ifcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) | |
| 21 | 10 19 20 | sylancl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
| 22 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) | |
| 23 | 19 10 22 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 24 | elrege0 | ⊢ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) ) | |
| 25 | 21 23 24 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 26 | itg2const | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) | |
| 27 | 7 9 25 26 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝑦 , 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
| 28 | 18 27 | eqtrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
| 29 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) | |
| 30 | 29 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) |
| 31 | 30 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) |
| 32 | renegcl | ⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) | |
| 33 | 32 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → - 𝑦 ∈ ℝ ) |
| 34 | ifcl | ⊢ ( ( - 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ) | |
| 35 | 33 19 34 | sylancl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ) |
| 36 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) | |
| 37 | 19 33 36 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) |
| 38 | elrege0 | ⊢ ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) ) | |
| 39 | 35 37 38 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 40 | itg2const | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ( 0 [,) +∞ ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) | |
| 41 | 7 9 39 40 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
| 42 | 31 41 | eqtrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) = ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) |
| 43 | 28 42 | oveq12d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) = ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) − ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 44 | 21 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℂ ) |
| 45 | 35 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ∈ ℂ ) |
| 46 | 8 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( vol ‘ 𝐴 ) ∈ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( vol ‘ 𝐴 ) ∈ ℂ ) |
| 48 | 44 45 47 | subdird | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) · ( vol ‘ 𝐴 ) ) = ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) − ( if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 49 | max0sub | ⊢ ( 𝑦 ∈ ℝ → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) = 𝑦 ) | |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) = 𝑦 ) |
| 51 | 50 | oveq1d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) − if ( 0 ≤ - 𝑦 , - 𝑦 , 0 ) ) · ( vol ‘ 𝐴 ) ) = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
| 52 | 43 48 51 | 3eqtr2rd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝑦 ) , - 𝑦 , 0 ) ) ) ) ) |
| 53 | 15 52 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ ) → ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
| 54 | 53 | ralrimiva | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ) |
| 55 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 56 | 55 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 57 | 4 54 56 | rspcdva | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 = ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
| 58 | simpl | ⊢ ( ( 𝑦 = ( ℑ ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 = ( ℑ ‘ 𝐵 ) ) | |
| 59 | 58 | itgeq2dv | ⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ∫ 𝐴 𝑦 d 𝑥 = ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) |
| 60 | oveq1 | ⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ( 𝑦 · ( vol ‘ 𝐴 ) ) = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑦 = ( ℑ ‘ 𝐵 ) → ( ∫ 𝐴 𝑦 d 𝑥 = ( 𝑦 · ( vol ‘ 𝐴 ) ) ↔ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 62 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 64 | 61 54 63 | rspcdva | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 = ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) |
| 65 | 64 | oveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( i · ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 66 | ax-icn | ⊢ i ∈ ℂ | |
| 67 | 66 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 68 | 63 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 69 | 67 68 46 | mulassd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) = ( i · ( ( ℑ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) ) ) |
| 70 | 65 69 | eqtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) |
| 71 | 57 70 | oveq12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) + ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) ) |
| 72 | 56 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 73 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 74 | 66 68 73 | sylancr | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 75 | 72 74 46 | adddird | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( vol ‘ 𝐴 ) ) + ( ( i · ( ℑ ‘ 𝐵 ) ) · ( vol ‘ 𝐴 ) ) ) ) |
| 76 | 71 75 | eqtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) ) |
| 77 | simpl3 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 78 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 79 | iblconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ 𝐿1 ) | |
| 80 | 78 79 | eqeltrrid | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 81 | 77 80 | itgcnval | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 82 | replim | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 83 | 82 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 84 | 83 | oveq1d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( vol ‘ 𝐴 ) ) = ( ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) · ( vol ‘ 𝐴 ) ) ) |
| 85 | 76 81 84 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ∫ 𝐴 𝐵 d 𝑥 = ( 𝐵 · ( vol ‘ 𝐴 ) ) ) |