This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | itgadd | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgadd.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itgadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | itgadd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 5 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 10 | 9 3 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 11 | 7 10 | readdd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
| 12 | 11 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 ) |
| 13 | 7 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 14 | 7 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 15 | 2 14 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 17 | 10 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 18 | 10 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) ) |
| 19 | 4 18 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) ) |
| 20 | 19 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
| 21 | 13 16 17 20 13 17 | itgaddlem2 | ⊢ ( 𝜑 → ∫ 𝐴 ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
| 22 | 12 21 | eqtrd | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) ) |
| 23 | 7 10 | imaddd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
| 24 | 23 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 ) |
| 25 | 7 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 26 | 15 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 27 | 10 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 28 | 19 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ 𝐿1 ) |
| 29 | 25 26 27 28 25 27 | itgaddlem2 | ⊢ ( 𝜑 → ∫ 𝐴 ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
| 30 | 24 29 | eqtrd | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 = ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 32 | ax-icn | ⊢ i ∈ ℂ | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → i ∈ ℂ ) |
| 34 | 25 26 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 35 | 27 28 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
| 36 | 33 34 35 | adddid | ⊢ ( 𝜑 → ( i · ( ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 37 | 31 36 | eqtrd | ⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) = ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 38 | 22 37 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 39 | 13 16 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 40 | 17 20 | itgcl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) |
| 41 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) | |
| 42 | 32 34 41 | sylancr | ⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 43 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) | |
| 44 | 32 35 43 | sylancr | ⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ∈ ℂ ) |
| 45 | 39 40 42 44 | add4d | ⊢ ( 𝜑 → ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 46 | 38 45 | eqtrd | ⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 47 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ V ) | |
| 48 | 1 2 3 4 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |
| 49 | 47 48 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐵 + 𝐶 ) ) d 𝑥 ) ) ) |
| 50 | 1 2 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 51 | 3 4 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) |
| 52 | 50 51 | oveq12d | ⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) = ( ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) + ( ∫ 𝐴 ( ℜ ‘ 𝐶 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐶 ) d 𝑥 ) ) ) ) |
| 53 | 46 49 52 | 3eqtr4d | ⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 𝐶 d 𝑥 ) ) |