This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1a and ftc1 . (Contributed by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | ||
| ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | ||
| ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | ||
| ftc1a.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | ||
| ftc1lem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| ftc1lem1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| Assertion | ftc1lem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 2 | ftc1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ftc1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ftc1.le | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ftc1.s | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ftc1.d | ⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) | |
| 7 | ftc1.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) | |
| 8 | ftc1a.f | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) | |
| 9 | ftc1lem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 10 | ftc1lem1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑌 ) ) | |
| 12 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑌 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑥 = 𝑌 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 14 | itgex | ⊢ ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V | |
| 15 | 13 1 14 | fvmpt | ⊢ ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 16 | 10 15 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑌 ) = ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝐴 ∈ ℝ ) |
| 19 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 20 | 2 3 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 21 | 20 10 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ℝ ) |
| 23 | 20 9 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ℝ ) |
| 25 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) | |
| 26 | 2 3 25 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) ) |
| 27 | 9 26 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵 ) ) |
| 28 | 27 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝑋 ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝐴 ≤ 𝑋 ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) | |
| 31 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) | |
| 32 | 2 21 31 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ↔ ( 𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) ) |
| 34 | 24 29 30 33 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝐴 [,] 𝑌 ) ) |
| 35 | 3 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 36 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) | |
| 37 | 2 3 36 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) ) |
| 38 | 10 37 | mpbid | ⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵 ) ) |
| 39 | 38 | simp3d | ⊢ ( 𝜑 → 𝑌 ≤ 𝐵 ) |
| 40 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑌 ≤ 𝐵 ) → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 41 | 35 39 40 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 42 | 41 5 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑌 ) ⊆ 𝐷 ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐴 (,) 𝑌 ) ⊆ 𝐷 ) |
| 44 | 43 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑌 ) ) → 𝑡 ∈ 𝐷 ) |
| 45 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 47 | 44 46 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 48 | 27 | simp3d | ⊢ ( 𝜑 → 𝑋 ≤ 𝐵 ) |
| 49 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑋 ≤ 𝐵 ) → ( 𝐴 (,) 𝑋 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 50 | 35 48 49 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 51 | 50 5 | sstrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ⊆ 𝐷 ) |
| 52 | ioombl | ⊢ ( 𝐴 (,) 𝑋 ) ∈ dom vol | |
| 53 | 52 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝑋 ) ∈ dom vol ) |
| 54 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) | |
| 55 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 56 | 55 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 57 | 51 53 54 56 | iblss | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 59 | 2 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 60 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ) → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) | |
| 61 | 59 28 60 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝑌 ) ) |
| 62 | 61 41 | sstrd | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 63 | 62 5 | sstrd | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ⊆ 𝐷 ) |
| 64 | ioombl | ⊢ ( 𝑋 (,) 𝑌 ) ∈ dom vol | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → ( 𝑋 (,) 𝑌 ) ∈ dom vol ) |
| 66 | 63 65 54 56 | iblss | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 68 | 18 22 34 47 58 67 | itgsplitioo | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ∫ ( 𝐴 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 69 | 17 68 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑌 ) = ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 70 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑋 ) ) | |
| 71 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝑥 ) = ( 𝐴 (,) 𝑋 ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) | |
| 72 | 70 71 | syl | ⊢ ( 𝑥 = 𝑋 → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 73 | itgex | ⊢ ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ V | |
| 74 | 72 1 73 | fvmpt | ⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 75 | 9 74 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( 𝐺 ‘ 𝑋 ) = ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 77 | 69 76 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) ) |
| 78 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝑋 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ V ) | |
| 79 | 78 57 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 80 | 63 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑡 ∈ 𝐷 ) |
| 81 | 80 45 | syldan | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 82 | 81 66 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ∈ ℂ ) |
| 83 | 79 82 | pncan2d | ⊢ ( 𝜑 → ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 84 | 83 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) − ∫ ( 𝐴 (,) 𝑋 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 85 | 77 84 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |