This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | ||
| frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | ||
| frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | ||
| frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | ||
| frgpup.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | ||
| frgpup3.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| frgpup3.e | ⊢ ( 𝜑 → ( 𝐾 ∘ 𝑈 ) = 𝐹 ) | ||
| Assertion | frgpup3lem | ⊢ ( 𝜑 → 𝐾 = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 2 | frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 3 | frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 4 | frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | |
| 5 | frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 8 | frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 9 | frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 10 | frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 11 | frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | |
| 12 | frgpup.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | |
| 13 | frgpup3.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 14 | frgpup3.e | ⊢ ( 𝜑 → ( 𝐾 ∘ 𝑈 ) = 𝐹 ) | |
| 15 | 10 1 | ghmf | ⊢ ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐾 : 𝑋 ⟶ 𝐵 ) |
| 16 | ffn | ⊢ ( 𝐾 : 𝑋 ⟶ 𝐵 → 𝐾 Fn 𝑋 ) | |
| 17 | 13 15 16 | 3syl | ⊢ ( 𝜑 → 𝐾 Fn 𝑋 ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 | frgpup1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 19 | 10 1 | ghmf | ⊢ ( 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐸 : 𝑋 ⟶ 𝐵 ) |
| 20 | ffn | ⊢ ( 𝐸 : 𝑋 ⟶ 𝐵 → 𝐸 Fn 𝑋 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑 → 𝐸 Fn 𝑋 ) |
| 22 | eqid | ⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 23 | 9 22 8 | frgpval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 25 | 2on | ⊢ 2o ∈ On | |
| 26 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 27 | 5 25 26 | sylancl | ⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
| 28 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 29 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 31 | 7 30 | eqtrid | ⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 32 | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 33 | 22 32 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 34 | 27 33 | syl | ⊢ ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 35 | 31 34 | eqtr4d | ⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 36 | 8 | fvexi | ⊢ ∼ ∈ V |
| 37 | 36 | a1i | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 38 | fvexd | ⊢ ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) | |
| 39 | 24 35 37 38 | qusbas | ⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
| 40 | 10 39 | eqtr4id | ⊢ ( 𝜑 → 𝑋 = ( 𝑊 / ∼ ) ) |
| 41 | eqimss | ⊢ ( 𝑋 = ( 𝑊 / ∼ ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) | |
| 42 | 40 41 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
| 43 | 42 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
| 44 | eqid | ⊢ ( 𝑊 / ∼ ) = ( 𝑊 / ∼ ) | |
| 45 | fveq2 | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐾 ‘ 𝑎 ) ) | |
| 46 | fveq2 | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ 𝑎 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ [ 𝑡 ] ∼ ) ↔ ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) ) |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 ∈ 𝑊 ) | |
| 49 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 50 | 48 49 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
| 51 | wrdf | ⊢ ( 𝑡 ∈ Word ( 𝐼 × 2o ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( 𝑡 ‘ 𝑛 ) ∈ ( 𝐼 × 2o ) ) |
| 54 | elxp2 | ⊢ ( ( 𝑡 ‘ 𝑛 ) ∈ ( 𝐼 × 2o ) ↔ ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 ) |
| 56 | fveq2 | ⊢ ( 𝑦 = 𝑖 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 57 | 56 | fveq2d | ⊢ ( 𝑦 = 𝑖 → ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 58 | 56 57 | ifeq12d | ⊢ ( 𝑦 = 𝑖 → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 59 | eqeq1 | ⊢ ( 𝑧 = 𝑗 → ( 𝑧 = ∅ ↔ 𝑗 = ∅ ) ) | |
| 60 | 59 | ifbid | ⊢ ( 𝑧 = 𝑗 → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 61 | fvex | ⊢ ( 𝐹 ‘ 𝑖 ) ∈ V | |
| 62 | fvex | ⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V | |
| 63 | 61 62 | ifex | ⊢ if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∈ V |
| 64 | 58 60 3 63 | ovmpo | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) → ( 𝑖 𝑇 𝑗 ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( 𝑖 𝑇 𝑗 ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 66 | elpri | ⊢ ( 𝑗 ∈ { ∅ , 1o } → ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) | |
| 67 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 68 | 66 67 | eleq2s | ⊢ ( 𝑗 ∈ 2o → ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) |
| 69 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ∘ 𝑈 ) = 𝐹 ) |
| 70 | 69 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 71 | 8 12 9 10 | vrgpf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ 𝑋 ) |
| 72 | 5 71 | syl | ⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝑋 ) |
| 73 | fvco3 | ⊢ ( ( 𝑈 : 𝐼 ⟶ 𝑋 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | |
| 74 | 72 73 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 75 | 70 74 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 77 | iftrue | ⊢ ( 𝑗 = ∅ → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 78 | 77 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 79 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 𝑗 = ∅ ) | |
| 80 | 79 | opeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑖 , ∅ 〉 ) |
| 81 | 80 | s1eqd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 〈“ 〈 𝑖 , 𝑗 〉 ”〉 = 〈“ 〈 𝑖 , ∅ 〉 ”〉 ) |
| 82 | 81 | eceq1d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 83 | 8 12 | vrgpval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 84 | 5 83 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 85 | 84 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 86 | 82 85 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = ( 𝑈 ‘ 𝑖 ) ) |
| 87 | 86 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 88 | 76 78 87 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 89 | 75 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 90 | 72 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑋 ) |
| 91 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 92 | 10 91 2 | ghminv | ⊢ ( ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑋 ) → ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 93 | 13 90 92 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 94 | 89 93 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 96 | 1n0 | ⊢ 1o ≠ ∅ | |
| 97 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 𝑗 = 1o ) | |
| 98 | 97 | neeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝑗 ≠ ∅ ↔ 1o ≠ ∅ ) ) |
| 99 | 96 98 | mpbiri | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 𝑗 ≠ ∅ ) |
| 100 | ifnefalse | ⊢ ( 𝑗 ≠ ∅ → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 101 | 99 100 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 102 | 97 | opeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑖 , 1o 〉 ) |
| 103 | 102 | s1eqd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 〈“ 〈 𝑖 , 𝑗 〉 ”〉 = 〈“ 〈 𝑖 , 1o 〉 ”〉 ) |
| 104 | 103 | eceq1d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 105 | 8 12 9 91 | vrgpinv | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 106 | 5 105 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 108 | 104 107 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 109 | 108 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 110 | 95 101 109 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 111 | 88 110 | jaodan | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 112 | 68 111 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 2o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 113 | 112 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 114 | 65 113 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( 𝑖 𝑇 𝑗 ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 115 | fveq2 | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝑇 ‘ 〈 𝑖 , 𝑗 〉 ) ) | |
| 116 | df-ov | ⊢ ( 𝑖 𝑇 𝑗 ) = ( 𝑇 ‘ 〈 𝑖 , 𝑗 〉 ) | |
| 117 | 115 116 | eqtr4di | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝑖 𝑇 𝑗 ) ) |
| 118 | s1eq | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 = 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ) | |
| 119 | 118 | eceq1d | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ = [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) |
| 120 | 119 | fveq2d | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 121 | 117 120 | eqeq12d | ⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ↔ ( 𝑖 𝑇 𝑗 ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) ) |
| 122 | 114 121 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 123 | 122 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 124 | 123 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 125 | 55 124 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) |
| 126 | 125 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 127 | 1 2 3 4 5 6 | frgpuptf | ⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
| 128 | fcompt | ⊢ ( ( 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ∧ 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑇 ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) | |
| 129 | 127 52 128 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) |
| 130 | 53 | s1cld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 131 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 132 | 130 131 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ 𝑊 ) |
| 133 | 9 8 7 10 | frgpeccl | ⊢ ( 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ 𝑊 → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ∈ 𝑋 ) |
| 134 | 132 133 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ∈ 𝑋 ) |
| 135 | 52 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑡 ‘ 𝑛 ) ) ) |
| 136 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐼 ∈ 𝑉 ) |
| 137 | 136 25 26 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐼 × 2o ) ∈ V ) |
| 138 | eqid | ⊢ ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( varFMnd ‘ ( 𝐼 × 2o ) ) | |
| 139 | 138 | vrmdfval | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( 𝑤 ∈ ( 𝐼 × 2o ) ↦ 〈“ 𝑤 ”〉 ) ) |
| 140 | 137 139 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( 𝑤 ∈ ( 𝐼 × 2o ) ↦ 〈“ 𝑤 ”〉 ) ) |
| 141 | s1eq | ⊢ ( 𝑤 = ( 𝑡 ‘ 𝑛 ) → 〈“ 𝑤 ”〉 = 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) | |
| 142 | 53 135 140 141 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) ) |
| 143 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ) | |
| 144 | eceq1 | ⊢ ( 𝑤 = 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 → [ 𝑤 ] ∼ = [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) | |
| 145 | 132 142 143 144 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) |
| 146 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 147 | 146 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 : 𝑋 ⟶ 𝐵 ) |
| 148 | 147 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 = ( 𝑤 ∈ 𝑋 ↦ ( 𝐾 ‘ 𝑤 ) ) ) |
| 149 | fveq2 | ⊢ ( 𝑤 = [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ → ( 𝐾 ‘ 𝑤 ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) | |
| 150 | 134 145 148 149 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 151 | 126 129 150 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) = ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 152 | 151 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 153 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
| 154 | ghmmhm | ⊢ ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 155 | 146 154 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 156 | 138 | vrmdf | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) |
| 157 | 137 156 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) |
| 158 | 49 | feq3d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ↔ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) ) |
| 159 | 157 158 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ) |
| 160 | wrdco | ⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ) | |
| 161 | 50 159 160 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ) |
| 162 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 163 | 162 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ) |
| 164 | eqid | ⊢ ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) | |
| 165 | 22 32 9 8 164 | frgpmhm | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 166 | 136 165 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 167 | 163 166 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 168 | 32 10 | mhmf | ⊢ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) |
| 169 | 167 168 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) |
| 170 | 162 | feq2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ↔ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) ) |
| 171 | 169 170 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ) |
| 172 | wrdco | ⊢ ( ( ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ∧ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) | |
| 173 | 161 171 172 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) |
| 174 | 10 | gsumwmhm | ⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 175 | 155 173 174 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 176 | 152 153 175 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 177 | 22 138 | frmdgsum | ⊢ ( ( ( 𝐼 × 2o ) ∈ V ∧ 𝑡 ∈ Word ( 𝐼 × 2o ) ) → ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = 𝑡 ) |
| 178 | 27 50 177 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = 𝑡 ) |
| 179 | 178 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ 𝑡 ) ) |
| 180 | wrdco | ⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word Word ( 𝐼 × 2o ) ) | |
| 181 | 50 157 180 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word Word ( 𝐼 × 2o ) ) |
| 182 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 183 | wrdeq | ⊢ ( ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) → Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word Word ( 𝐼 × 2o ) ) | |
| 184 | 182 183 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word Word ( 𝐼 × 2o ) ) |
| 185 | 181 184 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 186 | 32 | gsumwmhm | ⊢ ( ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ∧ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 187 | 167 185 186 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 188 | 7 8 | efger | ⊢ ∼ Er 𝑊 |
| 189 | 188 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ∼ Er 𝑊 ) |
| 190 | 7 | fvexi | ⊢ 𝑊 ∈ V |
| 191 | 190 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 ∈ V ) |
| 192 | eqid | ⊢ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) | |
| 193 | 189 191 192 | divsfval | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ 𝑡 ) = [ 𝑡 ] ∼ ) |
| 194 | 179 187 193 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = [ 𝑡 ] ∼ ) |
| 195 | 194 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐾 ‘ [ 𝑡 ] ∼ ) ) |
| 196 | 176 195 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ [ 𝑡 ] ∼ ) ) |
| 197 | 44 47 196 | ectocld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑊 / ∼ ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) |
| 198 | 43 197 | syldan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) |
| 199 | 17 21 198 | eqfnfvd | ⊢ ( 𝜑 → 𝐾 = 𝐸 ) |