This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | |- B = ( Base ` H ) |
|
| frgpup.n | |- N = ( invg ` H ) |
||
| frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
||
| frgpup.h | |- ( ph -> H e. Grp ) |
||
| frgpup.i | |- ( ph -> I e. V ) |
||
| frgpup.a | |- ( ph -> F : I --> B ) |
||
| frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpup.r | |- .~ = ( ~FG ` I ) |
||
| frgpup.g | |- G = ( freeGrp ` I ) |
||
| frgpup.x | |- X = ( Base ` G ) |
||
| frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
||
| frgpup.u | |- U = ( varFGrp ` I ) |
||
| frgpup3.k | |- ( ph -> K e. ( G GrpHom H ) ) |
||
| frgpup3.e | |- ( ph -> ( K o. U ) = F ) |
||
| Assertion | frgpup3lem | |- ( ph -> K = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | |- B = ( Base ` H ) |
|
| 2 | frgpup.n | |- N = ( invg ` H ) |
|
| 3 | frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
|
| 4 | frgpup.h | |- ( ph -> H e. Grp ) |
|
| 5 | frgpup.i | |- ( ph -> I e. V ) |
|
| 6 | frgpup.a | |- ( ph -> F : I --> B ) |
|
| 7 | frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 8 | frgpup.r | |- .~ = ( ~FG ` I ) |
|
| 9 | frgpup.g | |- G = ( freeGrp ` I ) |
|
| 10 | frgpup.x | |- X = ( Base ` G ) |
|
| 11 | frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
|
| 12 | frgpup.u | |- U = ( varFGrp ` I ) |
|
| 13 | frgpup3.k | |- ( ph -> K e. ( G GrpHom H ) ) |
|
| 14 | frgpup3.e | |- ( ph -> ( K o. U ) = F ) |
|
| 15 | 10 1 | ghmf | |- ( K e. ( G GrpHom H ) -> K : X --> B ) |
| 16 | ffn | |- ( K : X --> B -> K Fn X ) |
|
| 17 | 13 15 16 | 3syl | |- ( ph -> K Fn X ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 | frgpup1 | |- ( ph -> E e. ( G GrpHom H ) ) |
| 19 | 10 1 | ghmf | |- ( E e. ( G GrpHom H ) -> E : X --> B ) |
| 20 | ffn | |- ( E : X --> B -> E Fn X ) |
|
| 21 | 18 19 20 | 3syl | |- ( ph -> E Fn X ) |
| 22 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 23 | 9 22 8 | frgpval | |- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 24 | 5 23 | syl | |- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 25 | 2on | |- 2o e. On |
|
| 26 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 27 | 5 25 26 | sylancl | |- ( ph -> ( I X. 2o ) e. _V ) |
| 28 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 29 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 30 | 27 28 29 | 3syl | |- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 31 | 7 30 | eqtrid | |- ( ph -> W = Word ( I X. 2o ) ) |
| 32 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 33 | 22 32 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 34 | 27 33 | syl | |- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 35 | 31 34 | eqtr4d | |- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 36 | 8 | fvexi | |- .~ e. _V |
| 37 | 36 | a1i | |- ( ph -> .~ e. _V ) |
| 38 | fvexd | |- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
|
| 39 | 24 35 37 38 | qusbas | |- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
| 40 | 10 39 | eqtr4id | |- ( ph -> X = ( W /. .~ ) ) |
| 41 | eqimss | |- ( X = ( W /. .~ ) -> X C_ ( W /. .~ ) ) |
|
| 42 | 40 41 | syl | |- ( ph -> X C_ ( W /. .~ ) ) |
| 43 | 42 | sselda | |- ( ( ph /\ a e. X ) -> a e. ( W /. .~ ) ) |
| 44 | eqid | |- ( W /. .~ ) = ( W /. .~ ) |
|
| 45 | fveq2 | |- ( [ t ] .~ = a -> ( K ` [ t ] .~ ) = ( K ` a ) ) |
|
| 46 | fveq2 | |- ( [ t ] .~ = a -> ( E ` [ t ] .~ ) = ( E ` a ) ) |
|
| 47 | 45 46 | eqeq12d | |- ( [ t ] .~ = a -> ( ( K ` [ t ] .~ ) = ( E ` [ t ] .~ ) <-> ( K ` a ) = ( E ` a ) ) ) |
| 48 | simpr | |- ( ( ph /\ t e. W ) -> t e. W ) |
|
| 49 | 31 | adantr | |- ( ( ph /\ t e. W ) -> W = Word ( I X. 2o ) ) |
| 50 | 48 49 | eleqtrd | |- ( ( ph /\ t e. W ) -> t e. Word ( I X. 2o ) ) |
| 51 | wrdf | |- ( t e. Word ( I X. 2o ) -> t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) |
|
| 52 | 50 51 | syl | |- ( ( ph /\ t e. W ) -> t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) |
| 53 | 52 | ffvelcdmda | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( t ` n ) e. ( I X. 2o ) ) |
| 54 | elxp2 | |- ( ( t ` n ) e. ( I X. 2o ) <-> E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. ) |
|
| 55 | 53 54 | sylib | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. ) |
| 56 | fveq2 | |- ( y = i -> ( F ` y ) = ( F ` i ) ) |
|
| 57 | 56 | fveq2d | |- ( y = i -> ( N ` ( F ` y ) ) = ( N ` ( F ` i ) ) ) |
| 58 | 56 57 | ifeq12d | |- ( y = i -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = if ( z = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) |
| 59 | eqeq1 | |- ( z = j -> ( z = (/) <-> j = (/) ) ) |
|
| 60 | 59 | ifbid | |- ( z = j -> if ( z = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) |
| 61 | fvex | |- ( F ` i ) e. _V |
|
| 62 | fvex | |- ( N ` ( F ` i ) ) e. _V |
|
| 63 | 61 62 | ifex | |- if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) e. _V |
| 64 | 58 60 3 63 | ovmpo | |- ( ( i e. I /\ j e. 2o ) -> ( i T j ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) |
| 65 | 64 | adantl | |- ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( i T j ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) |
| 66 | elpri | |- ( j e. { (/) , 1o } -> ( j = (/) \/ j = 1o ) ) |
|
| 67 | df2o3 | |- 2o = { (/) , 1o } |
|
| 68 | 66 67 | eleq2s | |- ( j e. 2o -> ( j = (/) \/ j = 1o ) ) |
| 69 | 14 | adantr | |- ( ( ph /\ i e. I ) -> ( K o. U ) = F ) |
| 70 | 69 | fveq1d | |- ( ( ph /\ i e. I ) -> ( ( K o. U ) ` i ) = ( F ` i ) ) |
| 71 | 8 12 9 10 | vrgpf | |- ( I e. V -> U : I --> X ) |
| 72 | 5 71 | syl | |- ( ph -> U : I --> X ) |
| 73 | fvco3 | |- ( ( U : I --> X /\ i e. I ) -> ( ( K o. U ) ` i ) = ( K ` ( U ` i ) ) ) |
|
| 74 | 72 73 | sylan | |- ( ( ph /\ i e. I ) -> ( ( K o. U ) ` i ) = ( K ` ( U ` i ) ) ) |
| 75 | 70 74 | eqtr3d | |- ( ( ph /\ i e. I ) -> ( F ` i ) = ( K ` ( U ` i ) ) ) |
| 76 | 75 | adantr | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( F ` i ) = ( K ` ( U ` i ) ) ) |
| 77 | iftrue | |- ( j = (/) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( F ` i ) ) |
|
| 78 | 77 | adantl | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( F ` i ) ) |
| 79 | simpr | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> j = (/) ) |
|
| 80 | 79 | opeq2d | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> <. i , j >. = <. i , (/) >. ) |
| 81 | 80 | s1eqd | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> <" <. i , j >. "> = <" <. i , (/) >. "> ) |
| 82 | 81 | eceq1d | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> [ <" <. i , j >. "> ] .~ = [ <" <. i , (/) >. "> ] .~ ) |
| 83 | 8 12 | vrgpval | |- ( ( I e. V /\ i e. I ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) |
| 84 | 5 83 | sylan | |- ( ( ph /\ i e. I ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) |
| 85 | 84 | adantr | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) |
| 86 | 82 85 | eqtr4d | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> [ <" <. i , j >. "> ] .~ = ( U ` i ) ) |
| 87 | 86 | fveq2d | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( K ` [ <" <. i , j >. "> ] .~ ) = ( K ` ( U ` i ) ) ) |
| 88 | 76 78 87 | 3eqtr4d | |- ( ( ( ph /\ i e. I ) /\ j = (/) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 89 | 75 | fveq2d | |- ( ( ph /\ i e. I ) -> ( N ` ( F ` i ) ) = ( N ` ( K ` ( U ` i ) ) ) ) |
| 90 | 72 | ffvelcdmda | |- ( ( ph /\ i e. I ) -> ( U ` i ) e. X ) |
| 91 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 92 | 10 91 2 | ghminv | |- ( ( K e. ( G GrpHom H ) /\ ( U ` i ) e. X ) -> ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) = ( N ` ( K ` ( U ` i ) ) ) ) |
| 93 | 13 90 92 | syl2an2r | |- ( ( ph /\ i e. I ) -> ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) = ( N ` ( K ` ( U ` i ) ) ) ) |
| 94 | 89 93 | eqtr4d | |- ( ( ph /\ i e. I ) -> ( N ` ( F ` i ) ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) |
| 95 | 94 | adantr | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( N ` ( F ` i ) ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) |
| 96 | 1n0 | |- 1o =/= (/) |
|
| 97 | simpr | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> j = 1o ) |
|
| 98 | 97 | neeq1d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( j =/= (/) <-> 1o =/= (/) ) ) |
| 99 | 96 98 | mpbiri | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> j =/= (/) ) |
| 100 | ifnefalse | |- ( j =/= (/) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( N ` ( F ` i ) ) ) |
|
| 101 | 99 100 | syl | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( N ` ( F ` i ) ) ) |
| 102 | 97 | opeq2d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> <. i , j >. = <. i , 1o >. ) |
| 103 | 102 | s1eqd | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> <" <. i , j >. "> = <" <. i , 1o >. "> ) |
| 104 | 103 | eceq1d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> [ <" <. i , j >. "> ] .~ = [ <" <. i , 1o >. "> ] .~ ) |
| 105 | 8 12 9 91 | vrgpinv | |- ( ( I e. V /\ i e. I ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) |
| 106 | 5 105 | sylan | |- ( ( ph /\ i e. I ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) |
| 107 | 106 | adantr | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) |
| 108 | 104 107 | eqtr4d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> [ <" <. i , j >. "> ] .~ = ( ( invg ` G ) ` ( U ` i ) ) ) |
| 109 | 108 | fveq2d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( K ` [ <" <. i , j >. "> ] .~ ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) |
| 110 | 95 101 109 | 3eqtr4d | |- ( ( ( ph /\ i e. I ) /\ j = 1o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 111 | 88 110 | jaodan | |- ( ( ( ph /\ i e. I ) /\ ( j = (/) \/ j = 1o ) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 112 | 68 111 | sylan2 | |- ( ( ( ph /\ i e. I ) /\ j e. 2o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 113 | 112 | anasss | |- ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 114 | 65 113 | eqtrd | |- ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( i T j ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 115 | fveq2 | |- ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( T ` <. i , j >. ) ) |
|
| 116 | df-ov | |- ( i T j ) = ( T ` <. i , j >. ) |
|
| 117 | 115 116 | eqtr4di | |- ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( i T j ) ) |
| 118 | s1eq | |- ( ( t ` n ) = <. i , j >. -> <" ( t ` n ) "> = <" <. i , j >. "> ) |
|
| 119 | 118 | eceq1d | |- ( ( t ` n ) = <. i , j >. -> [ <" ( t ` n ) "> ] .~ = [ <" <. i , j >. "> ] .~ ) |
| 120 | 119 | fveq2d | |- ( ( t ` n ) = <. i , j >. -> ( K ` [ <" ( t ` n ) "> ] .~ ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) |
| 121 | 117 120 | eqeq12d | |- ( ( t ` n ) = <. i , j >. -> ( ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) <-> ( i T j ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) ) |
| 122 | 114 121 | syl5ibrcom | |- ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) |
| 123 | 122 | rexlimdvva | |- ( ph -> ( E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) |
| 124 | 123 | ad2antrr | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) |
| 125 | 55 124 | mpd | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) |
| 126 | 125 | mpteq2dva | |- ( ( ph /\ t e. W ) -> ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) |
| 127 | 1 2 3 4 5 6 | frgpuptf | |- ( ph -> T : ( I X. 2o ) --> B ) |
| 128 | fcompt | |- ( ( T : ( I X. 2o ) --> B /\ t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) -> ( T o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) ) |
|
| 129 | 127 52 128 | syl2an2r | |- ( ( ph /\ t e. W ) -> ( T o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) ) |
| 130 | 53 | s1cld | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> <" ( t ` n ) "> e. Word ( I X. 2o ) ) |
| 131 | 31 | ad2antrr | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> W = Word ( I X. 2o ) ) |
| 132 | 130 131 | eleqtrrd | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> <" ( t ` n ) "> e. W ) |
| 133 | 9 8 7 10 | frgpeccl | |- ( <" ( t ` n ) "> e. W -> [ <" ( t ` n ) "> ] .~ e. X ) |
| 134 | 132 133 | syl | |- ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> [ <" ( t ` n ) "> ] .~ e. X ) |
| 135 | 52 | feqmptd | |- ( ( ph /\ t e. W ) -> t = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( t ` n ) ) ) |
| 136 | 5 | adantr | |- ( ( ph /\ t e. W ) -> I e. V ) |
| 137 | 136 25 26 | sylancl | |- ( ( ph /\ t e. W ) -> ( I X. 2o ) e. _V ) |
| 138 | eqid | |- ( varFMnd ` ( I X. 2o ) ) = ( varFMnd ` ( I X. 2o ) ) |
|
| 139 | 138 | vrmdfval | |- ( ( I X. 2o ) e. _V -> ( varFMnd ` ( I X. 2o ) ) = ( w e. ( I X. 2o ) |-> <" w "> ) ) |
| 140 | 137 139 | syl | |- ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) = ( w e. ( I X. 2o ) |-> <" w "> ) ) |
| 141 | s1eq | |- ( w = ( t ` n ) -> <" w "> = <" ( t ` n ) "> ) |
|
| 142 | 53 135 140 141 | fmptco | |- ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> <" ( t ` n ) "> ) ) |
| 143 | eqidd | |- ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) = ( w e. W |-> [ w ] .~ ) ) |
|
| 144 | eceq1 | |- ( w = <" ( t ` n ) "> -> [ w ] .~ = [ <" ( t ` n ) "> ] .~ ) |
|
| 145 | 132 142 143 144 | fmptco | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> [ <" ( t ` n ) "> ] .~ ) ) |
| 146 | 13 | adantr | |- ( ( ph /\ t e. W ) -> K e. ( G GrpHom H ) ) |
| 147 | 146 15 | syl | |- ( ( ph /\ t e. W ) -> K : X --> B ) |
| 148 | 147 | feqmptd | |- ( ( ph /\ t e. W ) -> K = ( w e. X |-> ( K ` w ) ) ) |
| 149 | fveq2 | |- ( w = [ <" ( t ` n ) "> ] .~ -> ( K ` w ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) |
|
| 150 | 134 145 148 149 | fmptco | |- ( ( ph /\ t e. W ) -> ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) |
| 151 | 126 129 150 | 3eqtr4d | |- ( ( ph /\ t e. W ) -> ( T o. t ) = ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) |
| 152 | 151 | oveq2d | |- ( ( ph /\ t e. W ) -> ( H gsum ( T o. t ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) |
| 153 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | |- ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) |
| 154 | ghmmhm | |- ( K e. ( G GrpHom H ) -> K e. ( G MndHom H ) ) |
|
| 155 | 146 154 | syl | |- ( ( ph /\ t e. W ) -> K e. ( G MndHom H ) ) |
| 156 | 138 | vrmdf | |- ( ( I X. 2o ) e. _V -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) |
| 157 | 137 156 | syl | |- ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) |
| 158 | 49 | feq3d | |- ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W <-> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) ) |
| 159 | 157 158 | mpbird | |- ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W ) |
| 160 | wrdco | |- ( ( t e. Word ( I X. 2o ) /\ ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W ) |
|
| 161 | 50 159 160 | syl2anc | |- ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W ) |
| 162 | 35 | adantr | |- ( ( ph /\ t e. W ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 163 | 162 | mpteq1d | |- ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) = ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) ) |
| 164 | eqid | |- ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) = ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) |
|
| 165 | 22 32 9 8 164 | frgpmhm | |- ( I e. V -> ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) |
| 166 | 136 165 | syl | |- ( ( ph /\ t e. W ) -> ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) |
| 167 | 163 166 | eqeltrd | |- ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) |
| 168 | 32 10 | mhmf | |- ( ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) -> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) |
| 169 | 167 168 | syl | |- ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) |
| 170 | 162 | feq2d | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) : W --> X <-> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) ) |
| 171 | 169 170 | mpbird | |- ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) : W --> X ) |
| 172 | wrdco | |- ( ( ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W /\ ( w e. W |-> [ w ] .~ ) : W --> X ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) |
|
| 173 | 161 171 172 | syl2anc | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) |
| 174 | 10 | gsumwmhm | |- ( ( K e. ( G MndHom H ) /\ ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) |
| 175 | 155 173 174 | syl2anc | |- ( ( ph /\ t e. W ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) |
| 176 | 152 153 175 | 3eqtr4d | |- ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) |
| 177 | 22 138 | frmdgsum | |- ( ( ( I X. 2o ) e. _V /\ t e. Word ( I X. 2o ) ) -> ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = t ) |
| 178 | 27 50 177 | syl2an2r | |- ( ( ph /\ t e. W ) -> ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = t ) |
| 179 | 178 | fveq2d | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( ( w e. W |-> [ w ] .~ ) ` t ) ) |
| 180 | wrdco | |- ( ( t e. Word ( I X. 2o ) /\ ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word Word ( I X. 2o ) ) |
|
| 181 | 50 157 180 | syl2anc | |- ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word Word ( I X. 2o ) ) |
| 182 | 34 | adantr | |- ( ( ph /\ t e. W ) -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 183 | wrdeq | |- ( ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) -> Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word Word ( I X. 2o ) ) |
|
| 184 | 182 183 | syl | |- ( ( ph /\ t e. W ) -> Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word Word ( I X. 2o ) ) |
| 185 | 181 184 | eleqtrrd | |- ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 186 | 32 | gsumwmhm | |- ( ( ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) /\ ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) |
| 187 | 167 185 186 | syl2anc | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) |
| 188 | 7 8 | efger | |- .~ Er W |
| 189 | 188 | a1i | |- ( ( ph /\ t e. W ) -> .~ Er W ) |
| 190 | 7 | fvexi | |- W e. _V |
| 191 | 190 | a1i | |- ( ( ph /\ t e. W ) -> W e. _V ) |
| 192 | eqid | |- ( w e. W |-> [ w ] .~ ) = ( w e. W |-> [ w ] .~ ) |
|
| 193 | 189 191 192 | divsfval | |- ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` t ) = [ t ] .~ ) |
| 194 | 179 187 193 | 3eqtr3d | |- ( ( ph /\ t e. W ) -> ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = [ t ] .~ ) |
| 195 | 194 | fveq2d | |- ( ( ph /\ t e. W ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( K ` [ t ] .~ ) ) |
| 196 | 176 195 | eqtr2d | |- ( ( ph /\ t e. W ) -> ( K ` [ t ] .~ ) = ( E ` [ t ] .~ ) ) |
| 197 | 44 47 196 | ectocld | |- ( ( ph /\ a e. ( W /. .~ ) ) -> ( K ` a ) = ( E ` a ) ) |
| 198 | 43 197 | syldan | |- ( ( ph /\ a e. X ) -> ( K ` a ) = ( E ` a ) ) |
| 199 | 17 21 198 | eqfnfvd | |- ( ph -> K = E ) |