This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpval.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| frgpval.b | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | ||
| frgpval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| Assertion | frgpval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( 𝑀 /s ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpval.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | frgpval.b | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 3 | frgpval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 4 | elex | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) | |
| 5 | xpeq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 × 2o ) = ( 𝐼 × 2o ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑖 = 𝐼 → ( freeMnd ‘ ( 𝑖 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑖 = 𝐼 → ( freeMnd ‘ ( 𝑖 × 2o ) ) = 𝑀 ) |
| 8 | fveq2 | ⊢ ( 𝑖 = 𝐼 → ( ~FG ‘ 𝑖 ) = ( ~FG ‘ 𝐼 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑖 = 𝐼 → ( ~FG ‘ 𝑖 ) = ∼ ) |
| 10 | 7 9 | oveq12d | ⊢ ( 𝑖 = 𝐼 → ( ( freeMnd ‘ ( 𝑖 × 2o ) ) /s ( ~FG ‘ 𝑖 ) ) = ( 𝑀 /s ∼ ) ) |
| 11 | df-frgp | ⊢ freeGrp = ( 𝑖 ∈ V ↦ ( ( freeMnd ‘ ( 𝑖 × 2o ) ) /s ( ~FG ‘ 𝑖 ) ) ) | |
| 12 | ovex | ⊢ ( 𝑀 /s ∼ ) ∈ V | |
| 13 | 10 11 12 | fvmpt | ⊢ ( 𝐼 ∈ V → ( freeGrp ‘ 𝐼 ) = ( 𝑀 /s ∼ ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( freeGrp ‘ 𝐼 ) = ( 𝑀 /s ∼ ) ) |
| 15 | 1 14 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( 𝑀 /s ∼ ) ) |