This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpmhm.m | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| frgpmhm.w | ⊢ 𝑊 = ( Base ‘ 𝑀 ) | ||
| frgpmhm.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpmhm.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑊 ↦ [ 𝑥 ] ∼ ) | ||
| Assertion | frgpmhm | ⊢ ( 𝐼 ∈ 𝑉 → 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpmhm.m | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 2 | frgpmhm.w | ⊢ 𝑊 = ( Base ‘ 𝑀 ) | |
| 3 | frgpmhm.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 4 | frgpmhm.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 5 | frgpmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑊 ↦ [ 𝑥 ] ∼ ) | |
| 6 | 2on | ⊢ 2o ∈ On | |
| 7 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × 2o ) ∈ V ) |
| 9 | 1 | frmdmnd | ⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑀 ∈ Mnd ) |
| 10 | 8 9 | syl | ⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 11 | 3 | frgpgrp | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 12 | 11 | grpmndd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
| 13 | 1 2 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 14 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 15 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 18 | 8 17 | syl | ⊢ ( 𝐼 ∈ 𝑉 → 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 19 | 18 | eleq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊 ) → 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 21 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 23 | 3 4 21 22 | frgpeccl | ⊢ ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → [ 𝑥 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
| 24 | 20 23 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊 ) → [ 𝑥 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
| 25 | 24 5 | fmptd | ⊢ ( 𝐼 ∈ 𝑉 → 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ) |
| 26 | 21 4 | efger | ⊢ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) |
| 27 | ereq2 | ⊢ ( 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) → ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ) ) | |
| 28 | 18 27 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
| 29 | 26 28 | mpbiri | ⊢ ( 𝐼 ∈ 𝑉 → ∼ Er 𝑊 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ∼ Er 𝑊 ) |
| 31 | 2 | fvexi | ⊢ 𝑊 ∈ V |
| 32 | 31 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → 𝑊 ∈ V ) |
| 33 | 30 32 5 | divsfval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
| 34 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 35 | 1 2 34 | frmdadd | ⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) ) |
| 38 | 30 32 5 | divsfval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑎 ) = [ 𝑎 ] ∼ ) |
| 39 | 30 32 5 | divsfval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑏 ) = [ 𝑏 ] ∼ ) |
| 40 | 38 39 | oveq12d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) ) |
| 41 | 18 | eleq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑎 ∈ 𝑊 ↔ 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
| 42 | 18 | eleq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑏 ∈ 𝑊 ↔ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
| 43 | 41 42 | anbi12d | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ↔ ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) ) |
| 44 | 43 | biimpa | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
| 45 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 46 | 21 3 4 45 | frgpadd | ⊢ ( ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
| 47 | 44 46 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
| 48 | 40 47 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
| 49 | 33 37 48 | 3eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 50 | 49 | ralrimivva | ⊢ ( 𝐼 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 51 | 31 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → 𝑊 ∈ V ) |
| 52 | 29 51 5 | divsfval | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = [ ∅ ] ∼ ) |
| 53 | 3 4 | frgp0 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
| 54 | 53 | simprd | ⊢ ( 𝐼 ∈ 𝑉 → [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
| 56 | 25 50 55 | 3jca | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) |
| 57 | 1 | frmd0 | ⊢ ∅ = ( 0g ‘ 𝑀 ) |
| 58 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 59 | 2 22 34 45 57 58 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) ) |
| 60 | 10 12 56 59 | syl21anbrc | ⊢ ( 𝐼 ∈ 𝑉 → 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ) |