This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgp0.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| frgp0.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpeccl.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | ||
| frgpeccl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | frgpeccl | ⊢ ( 𝑋 ∈ 𝑊 → [ 𝑋 ] ∼ ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgp0.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | frgp0.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | frgpeccl.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 4 | frgpeccl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 5 | 2 | fvexi | ⊢ ∼ ∈ V |
| 6 | 5 | ecelqsi | ⊢ ( 𝑋 ∈ 𝑊 → [ 𝑋 ] ∼ ∈ ( 𝑊 / ∼ ) ) |
| 7 | 3 | efgrcl | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝑋 ∈ 𝑊 → 𝐼 ∈ V ) |
| 9 | eqid | ⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 10 | 1 9 2 | frgpval | ⊢ ( 𝐼 ∈ V → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑋 ∈ 𝑊 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 12 | 7 | simprd | ⊢ ( 𝑋 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 13 | 2on | ⊢ 2o ∈ On | |
| 14 | xpexg | ⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 15 | 8 13 14 | sylancl | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
| 16 | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 17 | 9 16 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 18 | 15 17 | syl | ⊢ ( 𝑋 ∈ 𝑊 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 19 | 12 18 | eqtr4d | ⊢ ( 𝑋 ∈ 𝑊 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 20 | 5 | a1i | ⊢ ( 𝑋 ∈ 𝑊 → ∼ ∈ V ) |
| 21 | fvexd | ⊢ ( 𝑋 ∈ 𝑊 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) | |
| 22 | 11 19 20 21 | qusbas | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
| 23 | 22 4 | eqtr4di | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑊 / ∼ ) = 𝐵 ) |
| 24 | 6 23 | eleqtrd | ⊢ ( 𝑋 ∈ 𝑊 → [ 𝑋 ] ∼ ∈ 𝐵 ) |