This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | ||
| frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | ||
| frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | ||
| frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | ||
| Assertion | frgpup1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 2 | frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 3 | frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 4 | frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | |
| 5 | frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 8 | frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 9 | frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 10 | frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 11 | frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 14 | 9 | frgpgrp | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 16 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupf | ⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝐵 ) |
| 17 | eqid | ⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 18 | 9 17 8 | frgpval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 20 | 2on | ⊢ 2o ∈ On | |
| 21 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 22 | 5 20 21 | sylancl | ⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
| 23 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 24 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 26 | 7 25 | eqtrid | ⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 27 | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 28 | 17 27 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 29 | 22 28 | syl | ⊢ ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 30 | 26 29 | eqtr4d | ⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 31 | 8 | fvexi | ⊢ ∼ ∈ V |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 33 | fvexd | ⊢ ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) | |
| 34 | 19 30 32 33 | qusbas | ⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
| 35 | 10 34 | eqtr4id | ⊢ ( 𝜑 → 𝑋 = ( 𝑊 / ∼ ) ) |
| 36 | eqimss | ⊢ ( 𝑋 = ( 𝑊 / ∼ ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
| 39 | 38 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ ( 𝑊 / ∼ ) ) |
| 40 | eqid | ⊢ ( 𝑊 / ∼ ) = ( 𝑊 / ∼ ) | |
| 41 | oveq2 | ⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) | |
| 42 | 41 | fveq2d | ⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 43 | fveq2 | ⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐸 ‘ 𝑐 ) ) | |
| 44 | 43 | oveq2d | ⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ↔ ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) ) |
| 46 | 37 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
| 48 | fvoveq1 | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) ) | |
| 49 | fveq2 | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ 𝑎 ) ) | |
| 50 | 49 | oveq1d | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 51 | 48 50 | eqeq12d | ⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ↔ ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) ) |
| 52 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 53 | 7 52 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 54 | 53 | sseli | ⊢ ( 𝑡 ∈ 𝑊 → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
| 55 | 53 | sseli | ⊢ ( 𝑢 ∈ 𝑊 → 𝑢 ∈ Word ( 𝐼 × 2o ) ) |
| 56 | ccatcl | ⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑢 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑡 ++ 𝑢 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 57 | 54 55 56 | syl2an | ⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝑡 ++ 𝑢 ) ∈ Word ( 𝐼 × 2o ) ) |
| 58 | 7 | efgrcl | ⊢ ( 𝑡 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 60 | 59 | simprd | ⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 61 | 57 60 | eleqtrrd | ⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝑡 ++ 𝑢 ) ∈ 𝑊 ) |
| 62 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑 ∧ ( 𝑡 ++ 𝑢 ) ∈ 𝑊 ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) ) |
| 63 | 61 62 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) ) |
| 64 | 54 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
| 65 | 55 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑢 ∈ Word ( 𝐼 × 2o ) ) |
| 66 | 1 2 3 4 5 6 | frgpuptf | ⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
| 68 | ccatco | ⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑢 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) = ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) | |
| 69 | 64 65 67 68 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) = ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) ) |
| 71 | 4 | grpmndd | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝐻 ∈ Mnd ) |
| 73 | wrdco | ⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) | |
| 74 | 54 66 73 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) |
| 75 | 74 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) |
| 76 | wrdco | ⊢ ( ( 𝑢 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) | |
| 77 | 65 67 76 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) |
| 78 | 1 13 | gsumccat | ⊢ ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ∧ ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
| 79 | 72 75 77 78 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
| 80 | 63 70 79 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
| 81 | 7 9 8 12 | frgpadd | ⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = [ ( 𝑡 ++ 𝑢 ) ] ∼ ) |
| 82 | 81 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = [ ( 𝑡 ++ 𝑢 ) ] ∼ ) |
| 83 | 82 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) ) |
| 84 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
| 85 | 84 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
| 86 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) |
| 87 | 86 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) |
| 88 | 85 87 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
| 89 | 80 83 88 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 90 | 89 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 91 | 40 51 90 | ectocld | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ ( 𝑊 / ∼ ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 92 | 47 91 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 93 | 92 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑊 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
| 94 | 40 45 93 | ectocld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ ( 𝑊 / ∼ ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
| 95 | 39 94 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
| 96 | 95 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
| 97 | 10 1 12 13 15 4 16 96 | isghmd | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) ) |