This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | ||
| frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | ||
| frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | ||
| frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | ||
| Assertion | frgpupval | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝐴 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 2 | frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 3 | frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 4 | frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | |
| 5 | frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 8 | frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 9 | frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 10 | frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 11 | frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | |
| 12 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑊 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) ∈ V ) | |
| 13 | 7 8 | efger | ⊢ ∼ Er 𝑊 |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ∼ Er 𝑊 ) |
| 15 | 7 | fvexi | ⊢ 𝑊 ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 𝑊 ∈ V ) |
| 17 | coeq2 | ⊢ ( 𝑔 = 𝐴 → ( 𝑇 ∘ 𝑔 ) = ( 𝑇 ∘ 𝐴 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑔 = 𝐴 → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ∘ 𝐴 ) ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupf | ⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝐵 ) |
| 20 | 19 | ffund | ⊢ ( 𝜑 → Fun 𝐸 ) |
| 21 | 11 12 14 16 18 20 | qliftval | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝐴 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝐴 ) ) ) |