This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumwmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| Assertion | gsumwmhm | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | oveq2 | ⊢ ( 𝑊 = ∅ → ( 𝑀 Σg 𝑊 ) = ( 𝑀 Σg ∅ ) ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 4 | 3 | gsum0 | ⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 5 | 2 4 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑀 Σg 𝑊 ) = ( 0g ‘ 𝑀 ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑊 = ∅ → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) ) |
| 7 | coeq2 | ⊢ ( 𝑊 = ∅ → ( 𝐻 ∘ 𝑊 ) = ( 𝐻 ∘ ∅ ) ) | |
| 8 | co02 | ⊢ ( 𝐻 ∘ ∅ ) = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝐻 ∘ 𝑊 ) = ∅ ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑊 = ∅ → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( 𝑁 Σg ∅ ) ) |
| 11 | eqid | ⊢ ( 0g ‘ 𝑁 ) = ( 0g ‘ 𝑁 ) | |
| 12 | 11 | gsum0 | ⊢ ( 𝑁 Σg ∅ ) = ( 0g ‘ 𝑁 ) |
| 13 | 10 12 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( 0g ‘ 𝑁 ) ) |
| 14 | 6 13 | eqeq12d | ⊢ ( 𝑊 = ∅ → ( ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ↔ ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) ) |
| 15 | mhmrcl1 | ⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑀 ∈ Mnd ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑀 ∈ Mnd ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 18 | 1 17 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 19 | 18 | 3expb | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 20 | 16 19 | sylan | ⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 21 | wrdf | ⊢ ( 𝑊 ∈ Word 𝐵 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 23 | wrdfin | ⊢ ( 𝑊 ∈ Word 𝐵 → 𝑊 ∈ Fin ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → 𝑊 ∈ Fin ) |
| 25 | hashnncl | ⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 27 | 26 | biimpar | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 28 | 27 | nnzd | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 29 | fzoval | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 31 | 30 | feq2d | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ↔ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) ) |
| 32 | 22 31 | mpbid | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝐵 ) |
| 34 | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) | |
| 35 | 27 34 | syl | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
| 36 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 37 | 35 36 | eleqtrdi | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 38 | eqid | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) | |
| 39 | 1 17 38 | mhmlin | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 40 | 39 | 3expb | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 41 | 40 | ad4ant14 | ⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 42 | 32 | ffnd | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 Fn ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 43 | fvco2 | ⊢ ( ( 𝑊 Fn ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) ) | |
| 44 | 42 43 | sylan | ⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
| 45 | 44 | eqcomd | ⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) = ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) ) |
| 46 | 20 33 37 41 45 | seqhomo | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( seq 0 ( ( +g ‘ 𝑁 ) , ( 𝐻 ∘ 𝑊 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 47 | 1 17 16 37 32 | gsumval2 | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑀 Σg 𝑊 ) = ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝐻 ‘ ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
| 49 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 50 | mhmrcl2 | ⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑁 ∈ Mnd ) | |
| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑁 ∈ Mnd ) |
| 52 | 1 49 | mhmf | ⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
| 54 | fco | ⊢ ( ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) → ( 𝐻 ∘ 𝑊 ) : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝑁 ) ) | |
| 55 | 53 32 54 | syl2anc | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ∘ 𝑊 ) : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝑁 ) ) |
| 56 | 49 38 51 37 55 | gsumval2 | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( seq 0 ( ( +g ‘ 𝑁 ) , ( 𝐻 ∘ 𝑊 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 57 | 46 48 56 | 3eqtr4d | ⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ) |
| 58 | 3 11 | mhm0 | ⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
| 60 | 14 57 59 | pm2.61ne | ⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ) |