This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ercpbl.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| ercpbl.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) | ||
| ercpbl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | ||
| Assertion | divsfval | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 2 | ercpbl.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) | |
| 3 | ercpbl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 4 | 1 | ecss | ⊢ ( 𝜑 → [ 𝐴 ] ∼ ⊆ 𝑉 ) |
| 5 | 2 4 | ssexd | ⊢ ( 𝜑 → [ 𝐴 ] ∼ ∈ V ) |
| 6 | eceq1 | ⊢ ( 𝑥 = 𝐴 → [ 𝑥 ] ∼ = [ 𝐴 ] ∼ ) | |
| 7 | 6 3 | fvmptg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ [ 𝐴 ] ∼ ∈ V ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
| 9 | 8 | expcom | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) ) |
| 10 | 3 | dmeqi | ⊢ dom 𝐹 = dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
| 11 | 1 | ecss | ⊢ ( 𝜑 → [ 𝑥 ] ∼ ⊆ 𝑉 ) |
| 12 | 2 11 | ssexd | ⊢ ( 𝜑 → [ 𝑥 ] ∼ ∈ V ) |
| 13 | 12 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V ) |
| 14 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V → dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = 𝑉 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = 𝑉 ) |
| 16 | 10 15 | eqtrid | ⊢ ( 𝜑 → dom 𝐹 = 𝑉 ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑉 ) ) |
| 18 | 17 | notbid | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴 ∈ 𝑉 ) ) |
| 19 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 20 | 18 19 | biimtrrdi | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 21 | ecdmn0 | ⊢ ( 𝐴 ∈ dom ∼ ↔ [ 𝐴 ] ∼ ≠ ∅ ) | |
| 22 | erdm | ⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉 ) | |
| 23 | 1 22 | syl | ⊢ ( 𝜑 → dom ∼ = 𝑉 ) |
| 24 | 23 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉 ) ) |
| 25 | 24 | biimpd | ⊢ ( 𝜑 → ( 𝐴 ∈ dom ∼ → 𝐴 ∈ 𝑉 ) ) |
| 26 | 21 25 | biimtrrid | ⊢ ( 𝜑 → ( [ 𝐴 ] ∼ ≠ ∅ → 𝐴 ∈ 𝑉 ) ) |
| 27 | 26 | necon1bd | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → [ 𝐴 ] ∼ = ∅ ) ) |
| 28 | 20 27 | jcad | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( ( 𝐹 ‘ 𝐴 ) = ∅ ∧ [ 𝐴 ] ∼ = ∅ ) ) ) |
| 29 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ∅ ∧ [ 𝐴 ] ∼ = ∅ ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) | |
| 30 | 28 29 | syl6 | ⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) ) |
| 31 | 9 30 | pm2.61d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |