This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| mhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| Assertion | mhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | mhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 7 | 1 2 3 4 5 6 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 9 | 8 | simp1d | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |