This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limccl.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| ellimc2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | ellimc2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limccl.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 4 | ellimc2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | limccl | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ | |
| 6 | 5 | sseli | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 7 | 6 | pm4.71ri | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 8 | eqid | ⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 9 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 10 | 8 4 9 1 2 3 | ellimc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 12 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 13 | 3 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 14 | 2 13 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 15 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 16 | 12 14 15 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 18 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 19 | ssun2 | ⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) | |
| 20 | snssg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 22 | 19 21 | mpbiri | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 24 | elun | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) | |
| 25 | velsn | ⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) | |
| 26 | 25 | orbi2i | ⊢ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 27 | 24 26 | bitri | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 28 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ 𝑧 = 𝐵 ) → 𝐶 ∈ ℂ ) | |
| 29 | pm5.61 | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) | |
| 30 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 31 | 30 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 32 | 29 31 | sylan2b | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 33 | 32 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ ¬ 𝑧 = 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 34 | 28 33 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 35 | 27 34 | sylan2b | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 36 | 35 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 37 | iscnp | ⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) | |
| 38 | 37 | baibd | ⊢ ( ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 39 | 17 18 23 36 38 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 40 | iftrue | ⊢ ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) | |
| 41 | 40 9 | fvmptg | ⊢ ( ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 42 | 22 41 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 43 | 42 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 44 | 43 | imbi1d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
| 46 | 4 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 47 | cnex | ⊢ ℂ ∈ V | |
| 48 | 47 | ssex | ⊢ ( ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 49 | 14 48 | syl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 51 | restval | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∪ { 𝐵 } ) ∈ V ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) | |
| 52 | 46 50 51 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
| 53 | 52 | rexeqdv | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 54 | vex | ⊢ 𝑤 ∈ V | |
| 55 | 54 | inex1 | ⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
| 56 | 55 | rgenw | ⊢ ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
| 57 | eqid | ⊢ ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 58 | eleq2 | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐵 ∈ 𝑣 ↔ 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) | |
| 59 | imaeq2 | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) = ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) | |
| 60 | 59 | sseq1d | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 61 | 58 60 | anbi12d | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 62 | 57 61 | rexrnmptw | ⊢ ( ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 63 | 56 62 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 64 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 65 | elin | ⊢ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ ( 𝐵 ∈ 𝑤 ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 66 | 65 | rbaib | ⊢ ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
| 67 | 64 66 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
| 68 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ ℂ ) | |
| 69 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 70 | ifexg | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) ∈ V ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) | |
| 71 | 68 69 70 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
| 72 | 71 | ralrimivw | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
| 73 | eqid | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 74 | 73 | fnmpt | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V → ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 75 | 73 | fmpt | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ) |
| 76 | df-f | ⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) | |
| 77 | 75 76 | bitri | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 78 | 77 | baib | ⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 79 | 72 74 78 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 80 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ 𝑢 ) | |
| 81 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → 𝑧 ∈ { 𝐵 } ) | |
| 82 | 25 40 | sylbi | ⊢ ( 𝑧 ∈ { 𝐵 } → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
| 83 | 82 | eleq1d | ⊢ ( 𝑧 ∈ { 𝐵 } → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 84 | 81 83 | syl | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
| 85 | 80 84 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 86 | 85 | ralrimiv | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
| 87 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) | |
| 88 | 87 | ineq2i | ⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) |
| 89 | indi | ⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) | |
| 90 | 88 89 | eqtr3i | ⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) |
| 91 | 90 | raleqi | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
| 92 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) | |
| 93 | 91 92 | bitri | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 94 | 93 | rbaib | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 95 | 86 94 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 96 | 79 95 | bitr3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
| 97 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) | |
| 98 | eldifsni | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) | |
| 99 | ifnefalse | ⊢ ( 𝑧 ≠ 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 100 | 98 99 | syl | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 101 | 100 | eleq1d | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 102 | 97 101 | syl | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 103 | 102 | ralbiia | ⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 104 | 96 103 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 105 | df-ima | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 106 | inss2 | ⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) | |
| 107 | resmpt | ⊢ ( ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 108 | 106 107 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 109 | 108 | rneqd | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 110 | 105 109 | eqtrid | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 111 | 110 | sseq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
| 112 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 113 | 112 | ffund | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → Fun 𝐹 ) |
| 114 | inss2 | ⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ( 𝐴 ∖ { 𝐵 } ) | |
| 115 | difss | ⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 | |
| 116 | 114 115 | sstri | ⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ 𝐴 |
| 117 | 112 | fdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → dom 𝐹 = 𝐴 ) |
| 118 | 116 117 | sseqtrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) |
| 119 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) | |
| 120 | 113 118 119 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 121 | 104 111 120 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 122 | 67 121 | anbi12d | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 123 | 122 | rexbidva | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 124 | 53 63 123 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 125 | 124 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) ∧ 𝐶 ∈ 𝑢 ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 126 | 125 | pm5.74da | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 127 | 45 126 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 128 | 127 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 129 | 11 39 128 | 3bitrd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 130 | 129 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 131 | 7 130 | bitrid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |