This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is not a limit point of the domain of the function F , then every point is a limit of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limccl.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| ellimc2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limcnlp.n | ⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | ||
| Assertion | limcnlp | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limccl.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | limccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 4 | ellimc2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | limcnlp.n | ⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | |
| 6 | 1 2 3 4 | ellimc2 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 7 | 4 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ⊆ ℂ ) |
| 9 | 8 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 10 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 11 | 10 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 12 | 11 | clscld | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 13 | 7 9 12 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 14 | 11 | cldopn | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ) |
| 16 | 11 | islp | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 17 | 7 2 16 | sylancr | ⊢ ( 𝜑 → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 18 | 5 17 | mtbid | ⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 19 | 3 18 | eldifd | ⊢ ( 𝜑 → 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 21 | difin2 | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) | |
| 22 | 9 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 23 | 11 | sscls | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 24 | 7 9 23 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
| 25 | ssdif0 | ⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ↔ ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) |
| 27 | 22 26 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ∅ ) |
| 28 | 27 | imaeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ∅ ) ) |
| 29 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 30 | 28 29 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) |
| 31 | 0ss | ⊢ ∅ ⊆ 𝑢 | |
| 32 | 30 31 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
| 33 | eleq2 | ⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐵 ∈ 𝑣 ↔ 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) | |
| 34 | ineq1 | ⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) | |
| 35 | 34 | imaeq2d | ⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
| 36 | 35 | sseq1d | ⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 37 | 33 36 | anbi12d | ⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 38 | 37 | rspcev | ⊢ ( ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 39 | 15 20 32 38 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 40 | 39 | a1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 41 | 40 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 42 | 41 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ → ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 43 | 42 | pm4.71d | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 44 | 6 43 | bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ℂ ) ) |
| 45 | 44 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |