This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the limit predicate. C is the limit of the function F at B if the function G , formed by adding B to the domain of F and setting it to C , is continuous at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| ellimc.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | ||
| ellimc.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| ellimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| ellimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | ellimc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcval.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 2 | limcval.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | ellimc.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 4 | ellimc.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 5 | ellimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 6 | ellimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 7 | 1 2 | limcfval | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
| 10 | 9 | eleq2d | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) ) |
| 11 | 1 2 3 | limcvallem | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |
| 12 | 4 5 6 11 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |
| 13 | ifeq1 | ⊢ ( 𝑦 = 𝐶 → if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 14 | 13 | mpteq2dv | ⊢ ( 𝑦 = 𝐶 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 15 | 14 3 | eqtr4di | ⊢ ( 𝑦 = 𝐶 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = 𝐺 ) |
| 16 | 15 | eleq1d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 17 | 16 | elab3g | ⊢ ( ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) → ( 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 18 | 12 17 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 19 | 10 18 | bitrd | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |