This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.61 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 30-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.61 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel2 | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) | |
| 2 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | 1 2 | impbid1 | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ) |
| 4 | 3 | pm5.32ri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) |