This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efopn . (Contributed by Mario Carneiro, 2-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efopn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | efopnlem2 | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efopn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 3 | f1orn | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ↔ ( log Fn ( ℂ ∖ { 0 } ) ∧ Fun ◡ log ) ) | |
| 4 | 3 | simprbi | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun ◡ log ) |
| 5 | funcnvres | ⊢ ( Fun ◡ log → ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ◡ log ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) | |
| 6 | 2 4 5 | mp2b | ⊢ ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ◡ log ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 7 | df-log | ⊢ log = ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 8 | 7 | cnveqi | ⊢ ◡ log = ◡ ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 9 | relres | ⊢ Rel ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 10 | dfrel2 | ⊢ ( Rel ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↔ ◡ ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ) | |
| 11 | 9 10 | mpbi | ⊢ ◡ ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 12 | 8 11 | eqtri | ⊢ ◡ log = ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 13 | 12 | reseq1i | ⊢ ( ◡ log ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 14 | imassrn | ⊢ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ⊆ ran log | |
| 15 | logrn | ⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) | |
| 16 | 14 15 | sseqtri | ⊢ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) |
| 17 | resabs1 | ⊢ ( ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) → ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 19 | 6 13 18 | 3eqtri | ⊢ ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 20 | 19 | imaeq1i | ⊢ ( ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) = ( ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
| 21 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 22 | 0cnd | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → 0 ∈ ℂ ) | |
| 23 | rpxr | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ* ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → 𝑅 ∈ ℝ* ) |
| 25 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) | |
| 26 | 21 22 24 25 | mp3an2i | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) |
| 27 | 26 | sselda | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝑥 ∈ ℂ ) |
| 28 | 27 | imcld | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 29 | efopnlem1 | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( abs ‘ ( ℑ ‘ 𝑥 ) ) < π ) | |
| 30 | pire | ⊢ π ∈ ℝ | |
| 31 | abslt | ⊢ ( ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝑥 ) ) < π ↔ ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) ) | |
| 32 | 28 30 31 | sylancl | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ( abs ‘ ( ℑ ‘ 𝑥 ) ) < π ↔ ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) ) |
| 33 | 29 32 | mpbid | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 34 | 33 | simpld | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → - π < ( ℑ ‘ 𝑥 ) ) |
| 35 | 33 | simprd | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ℑ ‘ 𝑥 ) < π ) |
| 36 | 30 | renegcli | ⊢ - π ∈ ℝ |
| 37 | 36 | rexri | ⊢ - π ∈ ℝ* |
| 38 | 30 | rexri | ⊢ π ∈ ℝ* |
| 39 | elioo2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) ) | |
| 40 | 37 38 39 | mp2an | ⊢ ( ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 41 | 28 34 35 40 | syl3anbrc | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) |
| 42 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 43 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 44 | elpreima | ⊢ ( ℑ Fn ℂ → ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) ) | |
| 45 | 42 43 44 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) |
| 46 | 27 41 45 | sylanbrc | ⊢ ( ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) → 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) → 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) ) |
| 48 | 47 | ssrdv | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 49 | df-ima | ⊢ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ran ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) | |
| 50 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 51 | 50 | logf1o2 | ⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) |
| 52 | f1ofo | ⊢ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) → ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) –onto→ ( ◡ ℑ “ ( - π (,) π ) ) ) | |
| 53 | forn | ⊢ ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) : ( ℂ ∖ ( -∞ (,] 0 ) ) –onto→ ( ◡ ℑ “ ( - π (,) π ) ) → ran ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ◡ ℑ “ ( - π (,) π ) ) ) | |
| 54 | 51 52 53 | mp2b | ⊢ ran ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ◡ ℑ “ ( - π (,) π ) ) |
| 55 | 49 54 | eqtri | ⊢ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ◡ ℑ “ ( - π (,) π ) ) |
| 56 | 48 55 | sseqtrrdi | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 57 | resima2 | ⊢ ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) = ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( ( exp ↾ ( log “ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) = ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ) |
| 59 | 20 58 | eqtrid | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) = ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ) |
| 60 | 50 | logcn | ⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) |
| 61 | difss | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ | |
| 62 | ssid | ⊢ ℂ ⊆ ℂ | |
| 63 | eqid | ⊢ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) | |
| 64 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 65 | 64 | toponrestid | ⊢ 𝐽 = ( 𝐽 ↾t ℂ ) |
| 66 | 1 63 65 | cncfcn | ⊢ ( ( ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) = ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn 𝐽 ) ) |
| 67 | 61 62 66 | mp2an | ⊢ ( ( ℂ ∖ ( -∞ (,] 0 ) ) –cn→ ℂ ) = ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn 𝐽 ) |
| 68 | 60 67 | eleqtri | ⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn 𝐽 ) |
| 69 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 70 | 69 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ 𝐽 ) |
| 71 | 21 22 24 70 | mp3an2i | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ 𝐽 ) |
| 72 | cnima | ⊢ ( ( ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) Cn 𝐽 ) ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ 𝐽 ) → ( ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) | |
| 73 | 68 71 72 | sylancr | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( ◡ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 74 | 59 73 | eqeltrrd | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 75 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 76 | 50 | logdmopn | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ ( TopOpen ‘ ℂfld ) |
| 77 | 76 1 | eleqtrri | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ 𝐽 |
| 78 | restopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ 𝐽 ) → ( ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↔ ( ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ 𝐽 ∧ ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) ) | |
| 79 | 75 77 78 | mp2an | ⊢ ( ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↔ ( ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ 𝐽 ∧ ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 80 | 74 79 | sylib | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ 𝐽 ∧ ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
| 81 | 80 | simpld | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝑅 < π ) → ( exp “ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) ∈ 𝐽 ) |