This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efopn . (Contributed by Mario Carneiro, 2-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efopn.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | efopnlem2 | |- ( ( R e. RR+ /\ R < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efopn.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 3 | f1orn | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log <-> ( log Fn ( CC \ { 0 } ) /\ Fun `' log ) ) |
|
| 4 | 3 | simprbi | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> Fun `' log ) |
| 5 | funcnvres | |- ( Fun `' log -> `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) ) |
|
| 6 | 2 4 5 | mp2b | |- `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
| 7 | df-log | |- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 8 | 7 | cnveqi | |- `' log = `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 9 | relres | |- Rel ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 10 | dfrel2 | |- ( Rel ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) <-> `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) ) |
|
| 11 | 9 10 | mpbi | |- `' `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 12 | 8 11 | eqtri | |- `' log = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 13 | 12 | reseq1i | |- ( `' log |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
| 14 | imassrn | |- ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ran log |
|
| 15 | logrn | |- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |
|
| 16 | 14 15 | sseqtri | |- ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ( `' Im " ( -u _pi (,] _pi ) ) |
| 17 | resabs1 | |- ( ( log " ( CC \ ( -oo (,] 0 ) ) ) C_ ( `' Im " ( -u _pi (,] _pi ) ) -> ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) ) |
|
| 18 | 16 17 | ax-mp | |- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
| 19 | 6 13 18 | 3eqtri | |- `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
| 20 | 19 | imaeq1i | |- ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 21 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 22 | 0cnd | |- ( ( R e. RR+ /\ R < _pi ) -> 0 e. CC ) |
|
| 23 | rpxr | |- ( R e. RR+ -> R e. RR* ) |
|
| 24 | 23 | adantr | |- ( ( R e. RR+ /\ R < _pi ) -> R e. RR* ) |
| 25 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ CC ) |
|
| 26 | 21 22 24 25 | mp3an2i | |- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ CC ) |
| 27 | 26 | sselda | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> x e. CC ) |
| 28 | 27 | imcld | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) e. RR ) |
| 29 | efopnlem1 | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` x ) ) < _pi ) |
|
| 30 | pire | |- _pi e. RR |
|
| 31 | abslt | |- ( ( ( Im ` x ) e. RR /\ _pi e. RR ) -> ( ( abs ` ( Im ` x ) ) < _pi <-> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
|
| 32 | 28 30 31 | sylancl | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` ( Im ` x ) ) < _pi <-> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
| 33 | 29 32 | mpbid | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) |
| 34 | 33 | simpld | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> -u _pi < ( Im ` x ) ) |
| 35 | 33 | simprd | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) < _pi ) |
| 36 | 30 | renegcli | |- -u _pi e. RR |
| 37 | 36 | rexri | |- -u _pi e. RR* |
| 38 | 30 | rexri | |- _pi e. RR* |
| 39 | elioo2 | |- ( ( -u _pi e. RR* /\ _pi e. RR* ) -> ( ( Im ` x ) e. ( -u _pi (,) _pi ) <-> ( ( Im ` x ) e. RR /\ -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) ) |
|
| 40 | 37 38 39 | mp2an | |- ( ( Im ` x ) e. ( -u _pi (,) _pi ) <-> ( ( Im ` x ) e. RR /\ -u _pi < ( Im ` x ) /\ ( Im ` x ) < _pi ) ) |
| 41 | 28 34 35 40 | syl3anbrc | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` x ) e. ( -u _pi (,) _pi ) ) |
| 42 | imf | |- Im : CC --> RR |
|
| 43 | ffn | |- ( Im : CC --> RR -> Im Fn CC ) |
|
| 44 | elpreima | |- ( Im Fn CC -> ( x e. ( `' Im " ( -u _pi (,) _pi ) ) <-> ( x e. CC /\ ( Im ` x ) e. ( -u _pi (,) _pi ) ) ) ) |
|
| 45 | 42 43 44 | mp2b | |- ( x e. ( `' Im " ( -u _pi (,) _pi ) ) <-> ( x e. CC /\ ( Im ` x ) e. ( -u _pi (,) _pi ) ) ) |
| 46 | 27 41 45 | sylanbrc | |- ( ( ( R e. RR+ /\ R < _pi ) /\ x e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> x e. ( `' Im " ( -u _pi (,) _pi ) ) ) |
| 47 | 46 | ex | |- ( ( R e. RR+ /\ R < _pi ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) R ) -> x e. ( `' Im " ( -u _pi (,) _pi ) ) ) ) |
| 48 | 47 | ssrdv | |- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( `' Im " ( -u _pi (,) _pi ) ) ) |
| 49 | df-ima | |- ( log " ( CC \ ( -oo (,] 0 ) ) ) = ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) |
|
| 50 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
|
| 51 | 50 | logf1o2 | |- ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u _pi (,) _pi ) ) |
| 52 | f1ofo | |- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u _pi (,) _pi ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u _pi (,) _pi ) ) ) |
|
| 53 | forn | |- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u _pi (,) _pi ) ) -> ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) ) |
|
| 54 | 51 52 53 | mp2b | |- ran ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) |
| 55 | 49 54 | eqtri | |- ( log " ( CC \ ( -oo (,] 0 ) ) ) = ( `' Im " ( -u _pi (,) _pi ) ) |
| 56 | 48 55 | sseqtrrdi | |- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( log " ( CC \ ( -oo (,] 0 ) ) ) ) |
| 57 | resima2 | |- ( ( 0 ( ball ` ( abs o. - ) ) R ) C_ ( log " ( CC \ ( -oo (,] 0 ) ) ) -> ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
|
| 58 | 56 57 | syl | |- ( ( R e. RR+ /\ R < _pi ) -> ( ( exp |` ( log " ( CC \ ( -oo (,] 0 ) ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
| 59 | 20 58 | eqtrid | |- ( ( R e. RR+ /\ R < _pi ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) = ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) ) |
| 60 | 50 | logcn | |- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) |
| 61 | difss | |- ( CC \ ( -oo (,] 0 ) ) C_ CC |
|
| 62 | ssid | |- CC C_ CC |
|
| 63 | eqid | |- ( J |`t ( CC \ ( -oo (,] 0 ) ) ) = ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |
|
| 64 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 65 | 64 | toponrestid | |- J = ( J |`t CC ) |
| 66 | 1 63 65 | cncfcn | |- ( ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ CC C_ CC ) -> ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) ) |
| 67 | 61 62 66 | mp2an | |- ( ( CC \ ( -oo (,] 0 ) ) -cn-> CC ) = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) |
| 68 | 60 67 | eleqtri | |- ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) |
| 69 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 70 | 69 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) |
| 71 | 21 22 24 70 | mp3an2i | |- ( ( R e. RR+ /\ R < _pi ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) |
| 72 | cnima | |- ( ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) e. ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) Cn J ) /\ ( 0 ( ball ` ( abs o. - ) ) R ) e. J ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
|
| 73 | 68 71 72 | sylancr | |- ( ( R e. RR+ /\ R < _pi ) -> ( `' ( log |` ( CC \ ( -oo (,] 0 ) ) ) " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
| 74 | 59 73 | eqeltrrd | |- ( ( R e. RR+ /\ R < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) ) |
| 75 | 1 | cnfldtop | |- J e. Top |
| 76 | 50 | logdmopn | |- ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) |
| 77 | 76 1 | eleqtrri | |- ( CC \ ( -oo (,] 0 ) ) e. J |
| 78 | restopn2 | |- ( ( J e. Top /\ ( CC \ ( -oo (,] 0 ) ) e. J ) -> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) <-> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) ) |
|
| 79 | 75 77 78 | mp2an | |- ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. ( J |`t ( CC \ ( -oo (,] 0 ) ) ) <-> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) |
| 80 | 74 79 | sylib | |- ( ( R e. RR+ /\ R < _pi ) -> ( ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) ) |
| 81 | 80 | simpld | |- ( ( R e. RR+ /\ R < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) R ) ) e. J ) |